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Diaphragm border detection in coronary X-Ray

angiographies: new method and applications

Simeon Petkov, Xavier Carrillo Suarez, Petia Radeva antbatta

Abstract

X-ray angiography is widely used in cardiac disease diaghd$ie diaphragm motion induces gray-
level changes, which are one of the main obstacles in gatiméitanalysis of myocardial perfusion. In
this paper we focus on detecting the diaphragm border innawyoX-ray angiographies. The proposed
method outperforms state of the art approaches. We extenglvaops publicly available data set, adding
new ground truth data. Finally, we show three applicatiohgus method: (1) a strategy to reduce false
positives in vessel enhanced images; (2) a digital diaphregmnoval algorithm; (3) an improvement in

Myocardial Blush Grade semi-automatic estimation.

Index Terms

X-ray, angiography, diaphragm, myocardial blush gradeAD&sselness

. INTRODUCTION

In diseases related to heart malfunctioning, it is impdrtarensure proper blood supply to the heart
and estimate the healthiness of the myocardial tissue.H®purpose, medical doctors insert a catheter
into the affected coronary artery and inject a radio-opdigued through it. The liquid flows through the
arteries and perfuses the myocardium. This process isdedas an angiography video sequence using
X-ray technology. Figure 1 shows an exemplar angiographiage. The arteries are clearly visible as
they are filled with the contrast liquid. The diaphragm isoalisible as a darkened area due to the fact
that it is a thick muscle. Usually, other structures like &rmor gas are visible as bright or dark areas
with varying gray level intensity and strength of the comtothat delineate them. When contrast liquid

perfuses myocardium, it is seen as a gray staining, whichighter than arteries and diaphragm. The
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motion of the diaphragm follows the patient’s breathingtguait; since the diaphragm often overlaps with

the myocardium, it complicates both visual and automatpéction of the myocardial perfusion.
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Figure 1. An exemplar frame from a coronary angiography secge.

A. Motivation

An automatic method detecting the diaphragm border woulddeful on two levels: (1) to digitally
remove the diaphragm from X-ray angiographies and (2) torawg existing algorithms for analysis
of myocardial perfusion. Digital removal of the diaphragoult help medical doctors when visually
estimating myocardium healthiness. Additionally, sevargomatic or semi-automatic methods for my-
ocardial perfusion estimation have been proposed in theséagn years [1], [2], [3], [4]; all of them are
negatively affected by the diaphragm motion. In [1] authoeke explicit use of a method for diaphragm
border detection [5] to improve the quality of the regionhtterest tracking that is used to measure
the myocardial perfusion. In [3], authors claim that thedbnihg movements can hide staining patterns,
showing that the diaphragm movement and the consequentleyralyvariation in an area can reduce

the method ability to measure the myocardial staining. Ingdithors impose the angiography sequence
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acquisition to be done while the patient holds breath anavghat the diaphragm movement introduces
artifacts in the resulting analysis. It has to be noted tlatall patients can hold breath for the time
required to record a complete sequence for myocardial pieriuanalysis, i.e. at least 7 seconds. In the
preliminary work in [2], authors claim that one limitatiori their method is that the manually delineated
perfusion area must be isolated from the diaphragm, so teattethod applicability is reduced for
certain angiographic projections. All these methods camefieof a pre-processing step able to detect
the diaphragm border. Section V-C shows how a digital diaghr removal improves the method in [3].
Another method that can make use of a diaphragm detectiomeivésselness filter in [6]. It often
detects the diaphragm border as a false positive vessdioBa¢A describes an algorithm to remove

false positive vessels, based on diaphragm detection ihetho

B. State of the art

To the best of our knowledge, two methods for automatic diagpm detection in cardiac X-ray
angiographies have been proposed so far in [5] and [7]. In dGfhors model the diaphragm as an
arc of a circle. A pre-processing step removes narrow centhjects like arteries and the catheter by
means of morphological closing operator. Then, a Canny eegector defines an edgeness map for the
pre-processed image. For any arc in the image plane, autissign a score - the sum of the edgeness
values of the pixels composing the arc. The circle that madmthat score is the optimal prediction. The
initial result is refined with active contours (a.k.a. srgkié a confidence measure indicates that it is not
good enough. In [7], authors adopt a similar approach as]ifmo[5emove arteries and highlight edges.
Then, a set of paths is constructed by tracking edges fromframge to the next. K-means clustering
divides the paths in three clusters. The method keeps orlpdths that follow the breathing pattern by
selecting the cluster of highest quality paths as definedfingection 2.4. The geometric model for the
diaphragm border in [7] is a parabola; the final step of thehwetis to find the optimal parabola for
each frame by removing outlying paths.

The method in [7] has one main drawback - it cannot make a gedifor a single frame before
processing the whole sequence, while the method in [5] egeiadividually on each frame. Regarding
the computational efficiency, both of the methods do noteehiruntime performance due to the use
of extensive searches - [7] in the path constructing proeesk [5] when finding the optimal circle
parameters. The models used in the two methods show thataidhem has the flexibility to represent
the diversity of diaphragm borders. The circle is too singoiel extensive search over circular arcs often

leads to non-plausible detections. The parabola is notbilexénough either to model diaphragm border
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curves, since it is symmetric along a single axis and thiarapsion is not true for all diaphragm borders.

Although the following two papers do not present an autoendiaphragm detection method, they
are worth mentioning. In [8], a method to track anatomicaives in X-ray sequences is presented.
The method requires manual initialization of the curve taraeked and clearly outperforms a classical
optical flow technique. In [9], authors present a method #stimates the "background” layer of an X-
ray angiography sequence. The goal is to perform a form dfadligubtraction in angiographies, which
highlights coronary arteries. The method is based on a Baydsamework, which combines tracking
and modeling of the background. Prior to contrast liquickdtipn, it requires that a small number of
images are acquired at different cardiac cycles and brgatphases to serve as static masks for the
background estimation.

Our paper contributes with a new diaphragm border detectiethod that outperforms previous ones
(Section V). The proposed method is novel in making use @fiar knowledge for the shape of
the diaphragm border. This reduces the possibility of nlanigible predictions caused by edges that
do not belong to the diaphragm border. We also provide a gatiwe evaluation of different models
for the diaphragm border (Section II-A). The methodology digital diaphragm removal from X-ray
angiographies (Section V-B) is another contribution. lditidn, we extended the publicly available data

set adding new images that increase the diversity of cases.

Il. DIAPHRAGM BORDER DETECTION

Our method is composed by a training phase and three mais, sdspdepicted in Figure 2. The
trained model introduces a probability criterion for thephragm border shape. In the first step of the
method, a morphological pre-processing removes the estarnd the catheter. The second step computes
an edgeness map by means of first order vertical derivativiéssrvwa Gaussian pyramid [10]. The last
step estimates the optimal diaphragm border, maximizing dviteria - (1) the diaphragm border shape
probability and (2) the normalized edgeness value collebtethe pixels that belong to the border. The
proposed method has three parameters:

— The size of the structuring disk for the morphological opata

— The standard deviation of the normal probability distibntexpressing the diaphragm border

positional uncertainty.

— The regularization factor for the diaphragm shape proligbil

Subsection II-A explains the rational for using a polyndnciarve to model the diaphragm border and

following subsections explain in detail each of the methastloles. The last Subsection II-F describes
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the validation we performed for tuning the three method patars.
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Figure 2. Block scheme of our method.

A. Evaluating different models for the diaphragm border

To compare different diaphragm border models, we fittedowarichoices to the annotated ground
truth curves of data sets A and B (described in Section 1. &valuated quantitatively a circular model
R? = (z—2.)*+(y—y.)* and polynomial curves of the form= >~ a;2%, whereN ¢ {2,3,4,5,6,7}.
Polynomials of & and F! order are bad choices because the diaphragm border is pgisaly not
plausible to appear as a straight line.

Table | contains the quantitative results for each modelugésl two error measures: the Mean Minimal
Distance {,/n/p) and the Hausdorff Distancelfp). The Mean Minimal Distance gives information
about the precision of the prediction while the HausdorftBice is an indicator of the robustness.
Rigorous description of these measures is provided in @edtf. Numerical results indicate that the
parabola is a better choice than the circle. The resultsifpr;p anddyp consistently improve as the
polynomial degree increases. This is an indication thaptitential of the polynomial model to represent
the variety of diaphragm borders increases with its dedeasidering the results from Table | we use

polynomial model for the diaphragm border.

B. Diaphragm border shape training

The variation in diaphragm shape is little with respect ffedeént patients and projections. Considering

this, we estimate the probability distribution of the diegdm border shape over the model parameters,
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dup dyMD
Avg=+std Avg=+std
circle 27.22+53.42 | 4.804+11.02

2nd degree polynomial 17.80+12.02 | 3.24+1.66
3rd degree polynomial| 10.7G:8.04 | 2.04+1.11
4th degree polynomiall 6.30+4.99 1.19+0.60
5th degree polynomial| 4.79-3.50 0.96+0.45
6th degree polynomial| 3.86+2.63 0.77+0.32
7th degree polynomial| 3.23+2.01 0.66+0.26

Table |
QUANTITATIVE RESULTS WHEN FITTING DIFFERENT MODELS TO THE GRUND TRUTH. THE ERROR MEASURES USED FOR
PERFORMANCE EVALUATION ARE DEFINED INSECTION V.

using Gaussian Mixture Models. As explained in Section W& start estimating the diaphragm border
using the parabolic model = ag + a;x + azx?. Parameter, represents the broadness/narrowness of
the parabola and whether it is concave or convex. dhearameter affects the horizontal shift and the
scaling of the parabola ang specifies its vertical translation. We are interested itding a probabilistic
model for the shape of the diaphragm regardless its veniasition, so we estimate the joint probability
p(a1,a2|D) using a two-dimensional Gaussian Mixture Model and the gdotuuth of a certain training
dataD. Estimating the joint probability density for all the polymial parameters excepy is still valid

for N > 2, asay specifies the vertical displacement of the curve, while ttieloparameters specify its

shape.

C. Pre-processing: digital artery removal

When the arteries are filled with contrast liquid, they usuatoduce stronger edges than the diaphragm
border. These edges could mislead our diaphragm detesiiate it is based on edge analysis. We use
a morphological closing operator to remove dark and thincstires. The structuring element of the
operator is a disk and its radius is one of the parameters pihmihod. The effect of applying the
morphological operator is shown in Figure 3; it removesraateand preserves edges that resemble
diaphragm borders. The resulting circular artifacts haweel contrast than the arteries which is enough

to reduce the possibility of suboptimal diaphragm edge el
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Figure 3. Morphological removal of dark and thin structu(eght) on an X-ray image (left). The radius of the struabgri

disk for the operator is 27 pixels.

D. Edgeness computation

To highlight consistent edges we compute an edgeness maheomadrphologically pre-processed
image. First-order scale-space vertical derivative idiagmas
0G(y;0,0?)

Oy ’
where I(z,y) € R is the input imagex denotes the convolution operatd@¥(y; 0,02) is a zero-mean

Dy (z,y) = ol(z,y) * (1)

Gaussian and is the scale parameter [11]. The set of scales for the de®a&ssian® = {1,2,4,8,16}
is defined in octaves of pixels so that it covers all possiitessof edges that could be produced by
the diaphragm border. To make the results for differentescalomparable, we apply the Lindeberg
normalization [11], i.e. multiplication by the scate

In all standard projections for recording X-Ray angiogiaphthe diaphragm is situated below the
diaphragm border, so we modify the edge computation tofpudiilges that correspond to lighter pixels

below and darker pixels above:

by | Dren) i Do) >0 o
o 0 if Dy(z,y) <O0.

We combine the maps for all scalés,(z,) into a single map by averaging the values over the number

of scales:

E(z,y) |¢|ZD z,y). (3)
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Finally, to ensure the edgeneBsx,y) € [01], we apply the following non-linear transformation:

E(‘Tvy) =1- exp(—E(a:,y)). (4)

Figure 4 shows an example of an edgeness map. The pixels vgth dugeness values consistently
delineate the two edges that look like a diaphragm bordes. rét of the pixels with positive edgeness

are scattered around the image and produce weaker signathta@dges resembling a diaphragm border.

Figure 4. A morphologically pre-processed frame (left) #sdEdgeness map (right).

E. Diaphragm border estimation

We estimate the value§iy, ...,ay} that define the optimal polynomial curve of" degree, which
delineates the diaphragm border. L¥tbe the width andY” the height of a frame. We minimize the

following cost function:

1
Q(a07"'7aN):_W Z E(xT’uyT’) _é.p(a17"'7aN’D)7 (5)
—_— ——
(ryr)ER a—priori shape
data
whereR = {(z,, Zf\io a;zt)} for 2, € {1,..., X} is the set of pixels constructing a polynomial curve.

To exclude points falling outside the image boundaries;. i# [1 Y] for somex,, the pair(z,,y,) is
removed fromR. The data term represents the criterion for maximizing terage edgeness value for
the pixels that belong to the curve. The a-priori shape teakeasn use of the a-priori knowledge about the

diaphragm shape (Section II-B); it maximizes the joint @oitity for the polynomial parameters with
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respect to the estimated joint probability density on aaiertraining dataD. The regularization factor for
the diaphragm shape probabiligyis a parameter of our method. As it is shown in Figure 4, theeadgs
map F is not precise in highlighting the diaphragm curve. We egprihe positional uncertainty using
a normal probability distribution. This can be quickly ireptented by applying a Gaussian filtering on
the Edgeness map. The standard deviation of the Gaussiawotisea parameter of our method.

As stated in Section II-A, diaphragm border is not prone tpesp as straight line. According to the
results from Table | the paraboldv(= 2) is the polynomial with the lowest order that achieves good
balance between precision and robustness. We start esijthe diaphragm border witiv = 2. To
avoid falling into local minima when minimizing the cost fttion (5), we construct a set @ff hypotheses
drawn by the estimated probability densities fqrand as. The bootstrapping fot, covers the range
of vertical positions so that the parabolic curves fall itite frame spatial support. For initialization we
select the triplet{ag, a1,a2} that maximizes the data term of the cost function (5). Theimization
of the cost function (5), by means of standard gradient desalgorithm, estimates the optimal values
ap, a1 andas. To improve the precision of the detection, we iterativelgrease the polynomial order
N by one degree, initializing the parameter values to thenedgéd in the previous iteration. The new
parametely is initialized to zero. By minimizing the cost function (5yain, we find the polynomial
curve of orderN that models the diaphragm border. This iterative processbearepeated up to the
desired order.

In [12, Chapter 1, page 7] C. Bishop shows how increasing tideroof a polynomial model also
increases the possibility of overfitting the data. The rssml Figure 5 confirm the negative effect if we

try to estimate the diaphragm border curve directly wih> 3.

F. Parameters tuning

As Section Il specifies, our method has three parametergahatre initialization. Prior to testing we
estimate their optimal values with an extensive searchdptimizes method performance on validation
data. Section Il describes the data sets and Section IVaggphow they are being distributed between
training, validation and testing. The mean and the standardation of the estimated values for the
method parameters are listed in Table Il. The tuning processidered zero as an optional value for
each parameter. Setting a parameter to zero is equival@mnitothe corresponding step. Zero was never
estimated as optimal value for none of the parameters. Tdgsreation shows the need of morphological

pre-processing, positional uncertainty modeling andiarpknowledge in our method.
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Method parameter meantstd of estimated values
Radius of the structuring disk for the morphological operat 27.47#1.45
Standard deviation of the positional uncertainty 6.92+1.32
Regularization factor for the diaphragm shape probability 0.015+0.013
Table Il

THE MEAN AND THE STANDARD DEVIATION OF THE ESTIMATED VALUES FCR THE METHOD PARAMETERS

I11. M ATERIAL

We used the publicly available set proposed in [7] (a.k.da d®t A). To increase its diversity, we
extended it with additional 58 frames (from 30 patients)ddotal of 74 frames (from 41 patients)Ve
also composed another set of frames - data etltBcontains 36 frames (from 18 patients). In some
images from data set B it is hard to delineate the diaphragroigely even for specialists; the border is
not clearly visible and it does not touch the borders of thageplane. In other images the diaphragm
border is well seen but it has peculiar shape. Considerirgettobservations, dividing the whole data
into two sets will provide interesting insights during tagt

To compute the inter-observer variability, the groundhriwr all additional frames was annotated
independently by two experts. Angiography sequences hege bcquired using is a Philips Allura Xper
FD20. The average pixel resolution has been estimated to3de<00.34 mm. The C-arm’s primary and
secondary angles in data set A vary from>44 97 and from -17 to 33 respectively. For data set B

the primary and secondary angles vary from°-48 92° and from -16 to 28.

IV. EVALUATION

We used the evaluation protocol proposed in [7], which issbdasn curve-to-curve distance errors. It
is composed of two error measures: the Mean Minimal Distdrdge,,p) and the Hausdorff Distance

(dgp)- The definition ofda;y p measure is:

duyvip(P,GT) \P\ Z]Ieﬂgclpd i,7), (6)

!Data set A is available at https://sites.google.combisphragmdetection/engineering-docs

2Data set B is available at https://sites.google.comgiaphragmdetection/engineering-docs/validationbset-
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where P is the set of all points from the predicted diaphragm cu@é, is the set of all points from
the ground truth curve and(i, j) is the Euclidean distance between two poihtnd j. The definition
of dyp is:

dup(P,GT) = max{sup inf d(¢,j), sup inf d(i,j) }, 7
HD( ) {iegy‘eGT (i, 5) sup inf (4,7) } 7

which is the Euclidean distance between the two most remoitetgpfrom each of the sets. It has to
be noted that whilelyp is symmetric,dyasp is not. The rational for combining two error measures is
based on the conclusion from [7] that each of the measuressents different performance aspects. The
measurelyp is very sensitive to predicted points laying far from thewgrd truth points. However, it
gives little information about the overall precision of theediction. This makes it useful for measuring
robustness. The other measuig;; p, is an indicator of the average precision of the prediction.

We followed the LOPO (Leave-One Patient Out) cross-valitatechnique, in which we split the
data in two parts. Images for one patient are used for tedtialf of the remaining images to train the
probabilistic model, and the rest for tuning the optimaluea for the method parameters. The process
is repeated so that the data for each patient is used onlyfon¢esting.

Tables Il and IV show the quantitative results respecyivaah data set A and B. The method in [5]

dup dyvmp
Avg+Std ‘ min ‘ max Avg+Std ‘ min ‘ max

Ol vs O2 19.64+-27.90 3.16 | 183.17| 2.7/H6.06 | 0.77 | 52.39
02 vs O1 19.64+27.90 3.16 | 183.17| 1.73+1.75 | 0.71| 15.65
[5] 81.88+102.53 | 18.03 | 482.15| 33.28+45.06 | 5.10 | 236.24

[5] (with snakes)| 82.114-97.18 | 16.40 | 468.00 | 26.08:43.81 | 3.84 | 237.66
[7] 107.03:102.80 | 5.39 | 378.08 | 34.74t43.69 | 1.28 | 168.31
Our (N=2) 48.76+57.29 7.58 | 518.88 | 9.86+18.67 | 2.50 | 164.51
Our (N=3) 47.8757.68 8.10 | 518.93| 9.40+18.74 | 2.40 | 164.58
Our (N=4) 47.64+57.78 8.13 | 518.94| 9.35+18.76 | 2.35 | 164.60
Our (N=5) 48.39+58.01 7.41 | 519.20| 10.02+18.35| 2.27 | 161.17
Our (N=6) 49.32£58.15 9.29 | 519.20| 10.28+18.32 | 2.37 | 161.16
Our (N=7) 49.32£58.15 9.29 | 519.20| 10.31-18.32 | 2.37 | 161.16

Table IlI

QUANTITATIVE RESULTS ON DATA SETA. ALL MEASURES ARE IN PIXELS
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dup dvmD
Avg+Std min max Avg+Std min max
Ol vs O2 38.98t63.19 | 3.16 | 378.19| 2.45+2.69 | 0.82 | 16.85
02 vs O1 38.98t63.19 | 3.16 | 378.19| 4.48:13.65 | 0.74 | 83.59
[5] 137.18:130.33 | 21.95 | 520.03 | 45.48:60.26 | 13.71 | 288.44
[5] (with snakes)| 115.39+122.20 | 17.03 | 518.99 | 39.83:71.01 | 10.43 | 350.07
[7] 170.75:81.21 | 21.47 | 425.88 | 53.75£51.03 | 3.38 | 221.60

Our (N=2) 102.5162.80 | 23.93 | 377.98| 21.46+16.04 | 4.62 | 105.19
Our (N=3) 101.21+64.18 | 20.00 | 377.98| 20.4116.57 | 4.23 | 105.19
Our (N=4) 101.0Gt64.30 | 20.00 | 377.97| 20.32+16.60 | 4.18 | 105.19
Our (N=5) 99.96+64.06 | 23.33 | 377.97| 20.00+16.57 | 3.81 | 105.19
Our (N=6) 100.04+:64.31 | 20.00 | 377.97 | 20.35t16.75 | 4.27 | 105.19
Our (N=7) 100.04+:64.32 | 20.00 | 377.97 | 20.49+16.59 | 3.92 | 105.19

Table IV

QUANTITATIVE RESULTS ON DATA SETB. ALL MEASURES ARE IN PIXELS

clearly performs better than the method in [7] for both dates.sThe performance of the method in [7]
on data set A decreases compared to the evaluation perfamjél this indicates that the method does
not generalize well on new images. Even with the lowest degadynomial model, our method achieves
better performance than both [5] and [7]. If we iterativelgiease the polynomial degree from tHé @

the 39 the quantitative results improve on both data sets; Thedmgment continues for data set B when
increasing the order of the polynomial to th&, Svhile for data set A there is no improvement. Degrees
higher than % result in slight performance degradation. The positiveafof iteratively increasing the
polynomial model degree is more evident on the difficult sasedata set B; for the cases in validation
set A the optimal degrees for the model are thig&hd the #.

Figure 5 plotsdy; s p on the accumulated data from data sets A and B for two testiagasios. Solid
line is thed, y/p if the degree of the polynomial model is iteratively incredsind the dashed line is the
dyryp if the method estimates the diaphragm border using dirdggier than the second polynomial
degree. The plot clearly shows the advantage of iterativelgementing the flexibility of the model.

Figure 6 shows four visual results of our prediction, togetwith the predictions of [7], [5] and the
ground truth. Examples (a) and (b) are from data set A and ghatvour method performs better than

the state of the art. Examples (c) and (d) show cases froms#tB, in which the diaphragm border
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Figure 5. Plot ofdxrarp On the accumulated data from data sets A and B for two testingasios. Solid line is théasap
if the degree of the polynomial model is iteratively incredsand the dashed line is tlk;rp if the method estimates the

diaphragm border using directly higher than the secondroiyal degree.

does not touch the image plane borders. In examples (c) gnthédpredictions of both methods are
suboptimal; in addition to the bad detection of the diaphrdgprder curves, their starting and ending

points are not determined properly.

V. APPLICATIONS OF THE METHOD

As stated in Subsection I-A, the proposed method could ingrother algorithms for coronary
angiography processing. We provide three examples:

(1) Removal of artifacts caused by the diaphragm border.

(2) Digital diaphragm removal from X-ray angiographies.

(3) Improvement of the semi-automatic Myocardial Blustimeation in [3].

A. Vesselness filter improvement

The vessel enhancement filter in [6] often detects the daphredge as a false positive vessel. Figure
7(b) shows the filter output for the frame in Figure 7(a). Wedithe diaphragm border detection method
to postprocess the vesselness map.lLét, y) be the vesselness value for piXel y) and2 is the area
that spans 15 pixels above and below the predicted diaphlemgder. We attenuated the vesselness for

each pixel inQ2 as following:

Viz,y) =V(z,y) Alz,y) | (z,y) € Q, (8)
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() (d)

Figure 6. Visual results of our prediction together with giredictions of state of the art and manually annotated gtdruth.

Examples (a) and (b) are from the data set A and (c) and (d)rane data set B. The dashed line is our prediction, the dotted
line is the prediction of [7], the '+’ signs represent the giotion of [5] and the thick solid line is the ground truth rked by

one of the specialists.

where the attenuation factor is:
A(x,y) = |Sin(4(7?p777v))|- 9)

Here 7, 2 7,(z, Y  a:z') is the tangent vector to the diaphragm border apnd 7,(z,y) is the
orientation of the tubular structure at pixet,y). To computer, and7, we used first order derivative

and Hessian matrix, respectively. Considering that [0, 1], if V(z,y) is small before the improvement,
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it will remain small after the improvement. This is sufficien prevent introducing any artifact. If the
two vectorsr, andr, are perpendicular (meaning that a vessel is crossing thphidigm border), then
the vesselness value will stay the same. If the two vect@®parallel (an indication that a false positive
detection is highly probable), the vesselness will becoem®.zFigure 7(c) shows the improvement in
the vesselness map from Figure 7(b). It can be seen that e fasitives caused by the diaphragm
are almost completely removed while the vessels are predemproving the general robustness of the
vesselness filter from [6] is out of the scope of this paper - goal here is to show how a simple

algorithm, based on diaphragm detection, improves thdtresthe filter.

(b) (©)

Figure 7. The effect of improving a vesselness map using @phdagm prediction; (a) is the original frame, (b) is the

vesselness map after applying the filter from [6] and (c) &ithproved result after the postprocessing.

B. Digital Diaphragm Removal

In our algorithm for digital diaphragm removal, we look atamgiography as a volum&(z, y,t) € R,
which has a compact suppdt= [1X] x [1Y] x [1T] ¢ N3, X, Y and T are the size of the angiography
in each dimension. Ler c © be the subset of pixels below or on the diaphragm bordeNando \ Y.
We calculate the average gray values rand T, respectivelyGy and Gs. Considering the fact that
the X-ray technology is multiplicative when displaying tweerlapping objects [13], the proportion:

- (10)

p
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gives the factor by which the diaphragm introduces darlgnive usep to digitally remove the darkening

from the part of the volume that contains the diaphragm as:

. S(z,y,t), if (x,y,t) €T
S(z,y,t) = ( ) ( ) (11)

S(z,y,t)p, if (z,y,t)eT.
Figure 8 shows the effect of digital diaphragm removal orr foases; the first row contains the original
images and the second row contains the images after therd@gphhas been digitally removed. Elimi-
nating the darkening effect improves myocardial perfusitsibility. The diaphragm border detection is
not perfect (equivalent td;p = 0), which results in dark gray and bright white artifacts.
Digital Subtraction Angiography is a well-known method tghlight arteries [14]. The third row

shows the result of applying DSA to the original image. Thekdass of the arteries is preserved while
the background has lower gray intensity. The fourth row shbew the visualization of arteries improves

when we apply DSA on the images after digitally removing tiegpdragm.

C. Myocardial Blush Grade estimation improvement

Myocardial Blush Grade (MBG) is a subjective score for easihg different levels of myocardial
perfusion [15]. In X-ray videos the perfusion of contraspid is seen as gray staining. In [3], authors
propose four descriptors of the myocardial staining patt€éhe diaphragm movement affects negatively
the performance of the method if the range covered by thendégn border overlaps with the myocardial
tissue; hence we chose an X-ray angiography in which thehdiggpn and the myocardium partially
overlap. Fig 9(a) shows the map for the staining space gescrgenerated by the method in [3]. Fig
9(b) depicts the same descriptor if we remove the diaphragon p MBG analysis. The difference in
the visual results shows the improvement if the diaphragmid#tally removed; most of the artifacts
caused by the breathing motion are removed while at the siameetie myocardial perfusion is retained.
Since the prediction is not precise at pixel level, not diifacts related to the diaphragm are removed.

Figure 10 shows two plots of gray level variation through atire angiography for a fixed region of
the myocardium with size 1% 15 pixels. Plot (a) is the gray level variation before theitdigdiaphragm
removal and plot (b) shows the same information after it. ple on the left shows that the patient
inhales and exhales three times during the angiography Bi@athing cycle is visible as a peak to bright

gray level which represents the inhaling while the diaphragpes down. Then a drop-down to dark gray
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(@) (b) (c) (d)

Figure 8. The effect of digital diaphragm removal on fouresasThe first row contains the original images and the second

row contains the images after the diaphragm has been remdhecdhird row shows the result of applying DSA to the origina
image. The fourth row demonstrates how the visualizatioartdries improves when we apply DSA on the original imageraft

removing the diaphragm from it.

level follows, representing the exhaling while the diagimagoes up and covers the region. In the plot

on the right the gray level variations due to the diaphragrehzeen drastically reduced.
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(@) (b)

Figure 9. Improvement of the staining space descriptor In (B depicts the staining space descriptor for an anggra

sequence; (b) depicts the same descriptor after the digihhas been digitally removed. The range in which the digphra

border moves is delineated with white lines. The whiter thelpthe higher is the staining in the area.
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Figure 10. Two plots of the gray level variation through theoke angiography in a fixed region of the myocardium with
size 15x 15 pixels. Plot (a) is the gray level before the diaphragmaeahand plot (b) shows the same information after the

diaphragm has been removed.

VI. CONCLUSION

We proposed an automatic method to delineate the diaphramgdebin X-ray angiography images
and showed three applications of it: (1) digital removallod tiaphragm from X-ray angiographies, (2)
improvement of the vesselness filter from [6] and (3) an improent of the method for semi-automatic

myocardial blush estimation from [3]. Our algorithm advesithe state of the art, adopting a probabilistic
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approach that requires much less computational cost tleapdth construction process in [7]. Iteratively
increasing the flexibility of the polynomial model allows itnprove the performance of our method.
However, two issues in automatic diaphragm detection nernaisolved: (1) Achieving errors that
are close to the inter-observer variability. This requipescision on pixel level and a methodology to
determine the starting and ending points of the diaphragrdesp(2) Sometimes the diaphragm is seen
as more than one distinct borders. So far, this has not bednresskd. Such cases need to be considered

when improving the state of the art in the field.
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