|
Bogdan Raducanu, & Fadi Dornaika. (2014). Embedding new observations via sparse-coding for non-linear manifold learning. PR - Pattern Recognition, 47(1), 480–492.
Abstract: Non-linear dimensionality reduction techniques are affected by two critical aspects: (i) the design of the adjacency graphs, and (ii) the embedding of new test data-the out-of-sample problem. For the first aspect, the proposed solutions, in general, were heuristically driven. For the second aspect, the difficulty resides in finding an accurate mapping that transfers unseen data samples into an existing manifold. Past works addressing these two aspects were heavily parametric in the sense that the optimal performance is only achieved for a suitable parameter choice that should be known in advance. In this paper, we demonstrate that the sparse representation theory not only serves for automatic graph construction as shown in recent works, but also represents an accurate alternative for out-of-sample embedding. Considering for a case study the Laplacian Eigenmaps, we applied our method to the face recognition problem. To evaluate the effectiveness of the proposed out-of-sample embedding, experiments are conducted using the K-nearest neighbor (KNN) and Kernel Support Vector Machines (KSVM) classifiers on six public face datasets. The experimental results show that the proposed model is able to achieve high categorization effectiveness as well as high consistency with non-linear embeddings/manifolds obtained in batch modes.
|
|
|
Juan Ramon Terven Salinas, Joaquin Salas, & Bogdan Raducanu. (2014). New Opportunities for Computer Vision-Based Assistive Technology Systems for the Visually Impaired. COMP - Computer, 47(4), 52–58.
Abstract: Computing advances and increased smartphone use gives technology system designers greater flexibility in exploiting computer vision to support visually impaired users. Understanding these users' needs will certainly provide insight for the development of improved usability of computing devices.
|
|
|
Laura Igual, Xavier Perez Sala, Sergio Escalera, Cecilio Angulo, & Fernando De la Torre. (2014). Continuous Generalized Procrustes Analysis. PR - Pattern Recognition, 47(2), 659–671.
Abstract: PR4883, PII: S0031-3203(13)00327-0
Two-dimensional shape models have been successfully applied to solve many problems in computer vision, such as object tracking, recognition, and segmentation. Typically, 2D shape models are learned from a discrete set of image landmarks (corresponding to projection of 3D points of an object), after applying Generalized Procustes Analysis (GPA) to remove 2D rigid transformations. However, the
standard GPA process suffers from three main limitations. Firstly, the 2D training samples do not necessarily cover a uniform sampling of all the 3D transformations of an object. This can bias the estimate of the shape model. Secondly, it can be computationally expensive to learn the shape model by sampling 3D transformations. Thirdly, standard GPA methods use only one reference shape, which can might be insufficient to capture large structural variability of some objects.
To address these drawbacks, this paper proposes continuous generalized Procrustes analysis (CGPA).
CGPA uses a continuous formulation that avoids the need to generate 2D projections from all the rigid 3D transformations. It builds an efficient (in space and time) non-biased 2D shape model from a set of 3D model of objects. A major challenge in CGPA is the need to integrate over the space of 3D rotations, especially when the rotations are parameterized with Euler angles. To address this problem, we introduce the use of the Haar measure. Finally, we extended CGPA to incorporate several reference shapes. Experimental results on synthetic and real experiments show the benefits of CGPA over GPA.
Keywords: Procrustes analysis; 2D shape model; Continuous approach
|
|
|
Antonio Hernandez, Miguel Angel Bautista, Xavier Perez Sala, Victor Ponce, Sergio Escalera, Xavier Baro, et al. (2014). Probability-based Dynamic Time Warping and Bag-of-Visual-and-Depth-Words for Human Gesture Recognition in RGB-D. PRL - Pattern Recognition Letters, 50(1), 112–121.
Abstract: PATREC5825
We present a methodology to address the problem of human gesture segmentation and recognition in video and depth image sequences. A Bag-of-Visual-and-Depth-Words (BoVDW) model is introduced as an extension of the Bag-of-Visual-Words (BoVW) model. State-of-the-art RGB and depth features, including a newly proposed depth descriptor, are analysed and combined in a late fusion form. The method is integrated in a Human Gesture Recognition pipeline, together with a novel probability-based Dynamic Time Warping (PDTW) algorithm which is used to perform prior segmentation of idle gestures. The proposed DTW variant uses samples of the same gesture category to build a Gaussian Mixture Model driven probabilistic model of that gesture class. Results of the whole Human Gesture Recognition pipeline in a public data set show better performance in comparison to both standard BoVW model and DTW approach.
Keywords: RGB-D; Bag-of-Words; Dynamic Time Warping; Human Gesture Recognition
|
|
|
Santiago Segui, Michal Drozdzal, Ekaterina Zaytseva, Fernando Azpiroz, Petia Radeva, & Jordi Vitria. (2014). Detection of wrinkle frames in endoluminal videos using betweenness centrality measures for images. TITB - IEEE Transactions on Information Technology in Biomedicine, 18(6), 1831–1838.
Abstract: Intestinal contractions are one of the most important events to diagnose motility pathologies of the small intestine. When visualized by wireless capsule endoscopy (WCE), the sequence of frames that represents a contraction is characterized by a clear wrinkle structure in the central frames that corresponds to the folding of the intestinal wall. In this paper we present a new method to robustly detect wrinkle frames in full WCE videos by using a new mid-level image descriptor that is based on a centrality measure proposed for graphs. We present an extended validation, carried out in a very large database, that shows that the proposed method achieves state of the art performance for this task.
Keywords: Wireless Capsule Endoscopy; Small Bowel Motility Dysfunction; Contraction Detection; Structured Prediction; Betweenness Centrality
|
|