toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Patricia Suarez; Henry Velesaca; Dario Carpio; Angel Sappa edit  url
openurl 
  Title Corn kernel classification from few training samples Type Journal
  Year 2023 Publication (up) Artificial Intelligence in Agriculture Abbreviated Journal  
  Volume 9 Issue Pages 89-99  
  Keywords  
  Abstract This article presents an efficient approach to classify a set of corn kernels in contact, which may contain good, or defective kernels along with impurities. The proposed approach consists of two stages, the first one is a next-generation segmentation network, trained by using a set of synthesized images that is applied to divide the given image into a set of individual instances. An ad-hoc lightweight CNN architecture is then proposed to classify each instance into one of three categories (ie good, defective, and impurities). The segmentation network is trained using a strategy that avoids the time-consuming and human-error-prone task of manual data annotation. Regarding the classification stage, the proposed ad-hoc network is designed with only a few sets of layers to result in a lightweight architecture capable of being used in integrated solutions. Experimental results and comparisons with previous approaches showing both the improvement in accuracy and the reduction in time are provided. Finally, the segmentation and classification approach proposed can be easily adapted for use with other cereal types.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ SVC2023 Serial 3892  
Permanent link to this record
 

 
Author Oscar Argudo; Marc Comino; Antonio Chica; Carlos Andujar; Felipe Lumbreras edit  url
openurl 
  Title Segmentation of aerial images for plausible detail synthesis Type Journal Article
  Year 2018 Publication (up) Computers & Graphics Abbreviated Journal CG  
  Volume 71 Issue Pages 23-34  
  Keywords Terrain editing; Detail synthesis; Vegetation synthesis; Terrain rendering; Image segmentation  
  Abstract The visual enrichment of digital terrain models with plausible synthetic detail requires the segmentation of aerial images into a suitable collection of categories. In this paper we present a complete pipeline for segmenting high-resolution aerial images into a user-defined set of categories distinguishing e.g. terrain, sand, snow, water, and different types of vegetation. This segmentation-for-synthesis problem implies that per-pixel categories must be established according to the algorithms chosen for rendering the synthetic detail. This precludes the definition of a universal set of labels and hinders the construction of large training sets. Since artists might choose to add new categories on the fly, the whole pipeline must be robust against unbalanced datasets, and fast on both training and inference. Under these constraints, we analyze the contribution of common per-pixel descriptors, and compare the performance of state-of-the-art supervised learning algorithms. We report the findings of two user studies. The first one was conducted to analyze human accuracy when manually labeling aerial images. The second user study compares detailed terrains built using different segmentation strategies, including official land cover maps. These studies demonstrate that our approach can be used to turn digital elevation models into fully-featured, detailed terrains with minimal authoring efforts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-8493 ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU; 600.086; 600.118 Approved no  
  Call Number Admin @ si @ ACC2018 Serial 3147  
Permanent link to this record
 

 
Author Henry Velesaca; Patricia Suarez; Raul Mira; Angel Sappa edit   pdf
url  openurl
  Title Computer Vision based Food Grain Classification: a Comprehensive Survey Type Journal Article
  Year 2021 Publication (up) Computers and Electronics in Agriculture Abbreviated Journal CEA  
  Volume 187 Issue Pages 106287  
  Keywords  
  Abstract This manuscript presents a comprehensive survey on recent computer vision based food grain classification techniques. It includes state-of-the-art approaches intended for different grain varieties. The approaches proposed in the literature are analyzed according to the processing stages considered in the classification pipeline, making it easier to identify common techniques and comparisons. Additionally, the type of images considered by each approach (i.e., images from the: visible, infrared, multispectral, hyperspectral bands) together with the strategy used to generate ground truth data (i.e., real and synthetic images) are reviewed. Finally, conclusions highlighting future needs and challenges are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ VSM2021 Serial 3576  
Permanent link to this record
 

 
Author Joan Serrat; Felipe Lumbreras; Francisco Blanco; Manuel Valiente; Montserrat Lopez-Mesas edit   pdf
url  openurl
  Title myStone: A system for automatic kidney stone classification Type Journal Article
  Year 2017 Publication (up) Expert Systems with Applications Abbreviated Journal ESA  
  Volume 89 Issue Pages 41-51  
  Keywords Kidney stone; Optical device; Computer vision; Image classification  
  Abstract Kidney stone formation is a common disease and the incidence rate is constantly increasing worldwide. It has been shown that the classification of kidney stones can lead to an important reduction of the recurrence rate. The classification of kidney stones by human experts on the basis of certain visual color and texture features is one of the most employed techniques. However, the knowledge of how to analyze kidney stones is not widespread, and the experts learn only after being trained on a large number of samples of the different classes. In this paper we describe a new device specifically designed for capturing images of expelled kidney stones, and a method to learn and apply the experts knowledge with regard to their classification. We show that with off the shelf components, a carefully selected set of features and a state of the art classifier it is possible to automate this difficult task to a good degree. We report results on a collection of 454 kidney stones, achieving an overall accuracy of 63% for a set of eight classes covering almost all of the kidney stones taxonomy. Moreover, for more than 80% of samples the real class is the first or the second most probable class according to the system, being then the patient recommendations for the two top classes similar. This is the first attempt towards the automatic visual classification of kidney stones, and based on the current results we foresee better accuracies with the increase of the dataset size.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; MSIAU; 603.046; 600.122; 600.118 Approved no  
  Call Number Admin @ si @ SLB2017 Serial 3026  
Permanent link to this record
 

 
Author Xavier Soria; Gonzalo Pomboza-Junez; Angel Sappa edit  doi
openurl 
  Title LDC: Lightweight Dense CNN for Edge Detection Type Journal Article
  Year 2022 Publication (up) IEEE Access Abbreviated Journal ACCESS  
  Volume 10 Issue Pages 68281-68290  
  Keywords  
  Abstract This paper presents a Lightweight Dense Convolutional (LDC) neural network for edge detection. The proposed model is an adaptation of two state-of-the-art approaches, but it requires less than 4% of parameters in comparison with these approaches. The proposed architecture generates thin edge maps and reaches the highest score (i.e., ODS) when compared with lightweight models (models with less than 1 million parameters), and reaches a similar performance when compare with heavy architectures (models with about 35 million parameters). Both quantitative and qualitative results and comparisons with state-of-the-art models, using different edge detection datasets, are provided. The proposed LDC does not use pre-trained weights and requires straightforward hyper-parameter settings. The source code is released at https://github.com/xavysp/LDC  
  Address 27 June 2022  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU; MACO; 600.160; 600.167 Approved no  
  Call Number Admin @ si @ SPS2022 Serial 3751  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: