toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Carlo Gatta; Francesco Ciompi edit   pdf
doi  openurl
  Title Stacked Sequential Scale-Space Taylor Context Type Journal Article
  Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 36 Issue 8 Pages 1694-1700  
  Keywords  
  Abstract We analyze sequential image labeling methods that sample the posterior label field in order to gather contextual information. We propose an effective method that extracts local Taylor coefficients from the posterior at different scales. Results show that our proposal outperforms state-of-the-art methods on MSRC-21, CAMVID, eTRIMS8 and KAIST2 data sets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes (up) LAMP; MILAB; 601.160; 600.079 Approved no  
  Call Number Admin @ si @ GaC2014 Serial 2466  
Permanent link to this record
 

 
Author Lu Yu; Lichao Zhang; Joost Van de Weijer; Fahad Shahbaz Khan; Yongmei Cheng; C. Alejandro Parraga edit   pdf
doi  openurl
  Title Beyond Eleven Color Names for Image Understanding Type Journal Article
  Year 2018 Publication Machine Vision and Applications Abbreviated Journal MVAP  
  Volume 29 Issue 2 Pages 361-373  
  Keywords Color name; Discriminative descriptors; Image classification; Re-identification; Tracking  
  Abstract Color description is one of the fundamental problems of image understanding. One of the popular ways to represent colors is by means of color names. Most existing work on color names focuses on only the eleven basic color terms of the English language. This could be limiting the discriminative power of these representations, and representations based on more color names are expected to perform better. However, there exists no clear strategy to choose additional color names. We collect a dataset of 28 additional color names. To ensure that the resulting color representation has high discriminative power we propose a method to order the additional color names according to their complementary nature with the basic color names. This allows us to compute color name representations with high discriminative power of arbitrary length. In the experiments we show that these new color name descriptors outperform the existing color name descriptor on the task of visual tracking, person re-identification and image classification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) LAMP; NEUROBIT; 600.068; 600.109; 600.120 Approved no  
  Call Number Admin @ si @ YYW2018 Serial 3087  
Permanent link to this record
 

 
Author Akshita Gupta; Sanath Narayan; Salman Khan; Fahad Shahbaz Khan; Ling Shao; Joost Van de Weijer edit  doi
openurl 
  Title Generative Multi-Label Zero-Shot Learning Type Journal Article
  Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 45 Issue 12 Pages 14611-14624  
  Keywords Generalized zero-shot learning; Multi-label classification; Zero-shot object detection; Feature synthesis  
  Abstract Multi-label zero-shot learning strives to classify images into multiple unseen categories for which no data is available during training. The test samples can additionally contain seen categories in the generalized variant. Existing approaches rely on learning either shared or label-specific attention from the seen classes. Nevertheless, computing reliable attention maps for unseen classes during inference in a multi-label setting is still a challenge. In contrast, state-of-the-art single-label generative adversarial network (GAN) based approaches learn to directly synthesize the class-specific visual features from the corresponding class attribute embeddings. However, synthesizing multi-label features from GANs is still unexplored in the context of zero-shot setting. When multiple objects occur jointly in a single image, a critical question is how to effectively fuse multi-class information. In this work, we introduce different fusion approaches at the attribute-level, feature-level and cross-level (across attribute and feature-levels) for synthesizing multi-label features from their corresponding multi-label class embeddings. To the best of our knowledge, our work is the first to tackle the problem of multi-label feature synthesis in the (generalized) zero-shot setting. Our cross-level fusion-based generative approach outperforms the state-of-the-art on three zero-shot benchmarks: NUS-WIDE, Open Images and MS COCO. Furthermore, we show the generalization capabilities of our fusion approach in the zero-shot detection task on MS COCO, achieving favorable performance against existing methods.  
  Address December 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) LAMP; PID2021-128178OB-I00 Approved no  
  Call Number Admin @ si @ Serial 3853  
Permanent link to this record
 

 
Author Pedro Martins; Paulo Carvalho; Carlo Gatta edit   pdf
doi  openurl
  Title On the completeness of feature-driven maximally stable extremal regions Type Journal Article
  Year 2016 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 74 Issue Pages 9-16  
  Keywords Local features; Completeness; Maximally Stable Extremal Regions  
  Abstract By definition, local image features provide a compact representation of the image in which most of the image information is preserved. This capability offered by local features has been overlooked, despite being relevant in many application scenarios. In this paper, we analyze and discuss the performance of feature-driven Maximally Stable Extremal Regions (MSER) in terms of the coverage of informative image parts (completeness). This type of features results from an MSER extraction on saliency maps in which features related to objects boundaries or even symmetry axes are highlighted. These maps are intended to be suitable domains for MSER detection, allowing this detector to provide a better coverage of informative image parts. Our experimental results, which were based on a large-scale evaluation, show that feature-driven MSER have relatively high completeness values and provide more complete sets than a traditional MSER detection even when sets of similar cardinality are considered.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes (up) LAMP;MILAB; Approved no  
  Call Number Admin @ si @ MCG2016 Serial 2748  
Permanent link to this record
 

 
Author Chengyi Zou; Shuai Wan; Tiannan Ji; Marc Gorriz Blanch; Marta Mrak; Luis Herranz edit  url
doi  openurl
  Title Chroma Intra Prediction with Lightweight Attention-Based Neural Networks Type Journal Article
  Year 2023 Publication IEEE Transactions on Circuits and Systems for Video Technology Abbreviated Journal TCSVT  
  Volume 34 Issue 1 Pages 549 - 560  
  Keywords  
  Abstract Neural networks can be successfully used for cross-component prediction in video coding. In particular, attention-based architectures are suitable for chroma intra prediction using luma information because of their capability to model relations between difierent channels. However, the complexity of such methods is still very high and should be further reduced, especially for decoding. In this paper, a cost-effective attention-based neural network is designed for chroma intra prediction. Moreover, with the goal of further improving coding performance, a novel approach is introduced to utilize more boundary information effectively. In addition to improving prediction, a simplification methodology is also proposed to reduce inference complexity by simplifying convolutions. The proposed schemes are integrated into H.266/Versatile Video Coding (VVC) pipeline, and only one additional binary block-level syntax flag is introduced to indicate whether a given block makes use of the proposed method. Experimental results demonstrate that the proposed scheme achieves up to −0.46%/−2.29%/−2.17% BD-rate reduction on Y/Cb/Cr components, respectively, compared with H.266/VVC anchor. Reductions in the encoding and decoding complexity of up to 22% and 61%, respectively, are achieved by the proposed scheme with respect to the previous attention-based chroma intra prediction method while maintaining coding performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) MACO; LAMP Approved no  
  Call Number Admin @ si @ ZWJ2023 Serial 3875  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: