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Stacked Sequential Scale-Space
Taylor Context

Carlo Gatta, Francesco Ciompi

Abstract—We analyze sequential image labeling methods that sample

the posterior label field in order to gather contextual information. We pro-

pose an effective method that extracts local Taylor coefficients from the

posterior at different scales. Results show that our proposal outperforms

state-of-the-art methods on MSRC-21, CAMVID, eTRIMS8 and KAIST2

datasets.

Index Terms—Contextual modeling, Semantic image labeling, Stacked

Sequential Learning

✦

1 INTRODUCTION

Semantic image segmentation is the process to simulta-
neously segment and classify objects in an image. In the
last decade contextual information has been used to im-
prove the performance of methods that are based purely
on appearance. In this field, the two main approaches are
graphical models and sequential methods.

Sequential models are based on the idea of Stacking
[1], which provides a sound framework to join appear-
ance and contextual information in a simple manner. The
basic idea is that information of object appearance can
be complemented by extracting contextual information
from the posterior label field. Posteriors are computed
by applying a classifier to the appearance features. The
contextual information is obtained by sampling the pos-
terior label field from a set of pixels (or regions) around
the pixel of interest. However, how to define the set of
pixels (also called stencil) is still an open issue, and many
approaches define it ad-hoc with respect to the specific
problem. An improvement in the theoretical aspect of
the stencil definition comes from multi-scale approaches:
they require the posterior label field to be filtered with a
proper Gaussian function prior to sampling, depending
on the distance of the stencil pixel from the pixel of
interest.

In this paper, firstly we propose an analysis of different
ways of extracting contextual information in sequential
methods, which allows us to highlight the benefits and
limitations of existing approaches. The main paper con-
tribution is a novel way to extract contextual information
based on local Taylor expansion of posterior label field
embedded in a scale-space representation. We show that
this approach has several advantages w.r.t. prior meth-
ods; it allows to: (i) capture the contextual information
with less features; (ii) modulate the expressive power of
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the representation by simply varying the Taylor order
and (iii) model spatial label relations in a continuous
way. We also provide a complete framework in which
our proposal can be implemented and tested on well
known datasets.

The paper goes as follows: section 2 briefly introduces
related works, section 3 provides an analysis of previous
sequential methods, section 4 gives a detailed explana-
tion of our method; sections 5 and 6 provide results and
discussion of the method on four datasets; conclusions
end the paper.

2 STATE OF THE ART

Semantic image segmentation and restoration have been
successfully performed by modeling data as Conditional
Random Fields (CRFs) [2] and Markov Random Fields
(MRFs) [3]. Initially, CRFs were used to handle noisy
classification at small scale [4]. Progressively, mid-scale
information has been included by hierarchical CRFs
[5], [6], [7], together with higher order relationships [8]
between super-pixels. Recently, the Random Forest [9]
ensemble architecture has been also used to achieve
semantic pixel-wise classification and segmentation [10],
[11], [12]. Three novel approaches substitute explicit
modeling of labels interaction with a learning-based
approach [13], [14], [15]. Finally, the global coherence
of the segmentation has been improved by adding one
or more super-nodes that govern the coexistence of
different labels in the same segmentation result [16], [17].

A different set of methods faces the semantic
segmentation problem by generating a large set of
figure-background segmentations [18]. The combination
and/or composition of these segmentations is done by
means of different strategies, as minimizing regions
overlap while maximizing image coverage, and promot-
ing global consistency of classes.

The idea of sequentially exploiting contextual infor-
mation in image semantic segmentation has been largely
used so far by the Auto-context algorithm [19], [20], the
Multi-Scale Stacked Sequential Learning [21] (MS-SSL),
the Multi-Scale Context Model [22] (MS-CM), and the
Iterative Context Forests [23] (ICF). The idea is based on
a seminal paper on the concept of Stacked Sequential
Learning [1]. In these approaches, a first classifier gener-
ates a posterior class probability using solely appearance
features; subsequent classifiers incorporate contextual
information by sampling a sparse set of neighbor values
[19], [20], or averaging probability from a large set
of rectangular regions [23]. To reduce the influence of
noise in probability fields due to pure appearance-based
prediction, and to extend the sampling to allow efficient
long range interaction, some approaches introduce a
multi-scale Gaussian filtering (scale-space) prior to sam-
pling [22], [21]. These latter algorithms prove that the
multi-scale Gaussian decomposition of posterior label
field improves over pure sampling [22] and provides
a simple way to implement long range interaction ef-
ficiently [21].
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Fig. 1. Different sampling patterns. See text for details.

3 ANALYSIS OF SEQUENTIAL METHODS

The analysis of sequential methods can be structured
around two main issues: (1) how the contextual informa-
tion is gathered from the posterior label field; (2) which
kind of relationship between contextual features can be
modeled. Figure 1 shows a toy example of posterior
label field for a binary problem (a). (b) and (c) show
the sampling pattern of Auto-context and MS-SSL (using
σ = 4px), respectively. Sampling pattern of MS-CM is
similar to MS-SSL but omitting the central sampling
point.

Auto-context. The typical form of sampling is given
by the Auto-context algorithm [19] where the density of
points decreases with the distance from the center (Fig-
ure 1(b)). At each spatial position the posterior of a class
can be sampled, or averaged around its 8-neighborhood.
Within this sampling scheme, being Nc the number of
classes and Dmax the maximum distance in pixels from
the central one, the number of contextual features grows
as Nc(1 + 4Dmax). To deal with this number of features,
authors perform an implicit feature selection by means
of boosting.

MS-SSL / MS-CM. The MS-SSL [21] and the MS-
CM [22] have a sampling schema based on a local 8-
neighborhood pattern repeated such that the distance
of sampling positions to the central pixel grows expo-
nentially, while the posterior is filtered with a Gaussian,
having the pixel squared distance as variance. Since both
methods use a multi-scale approach in octaves, the num-
ber of contextual features grows as 9Nc(1 + log2 Dmax)
and 8Nc(1 + log2 Dmax) for MS-SSL and MS-CM respec-
tively.

ICF. The ICF method [24] randomly generates a large
number of candidates regions where the posterior is
averaged to extract contextual information. ICF is ba-
sically a sequential version of TextonBoost [4], where
the sampling strategy is further extended by extracting
contextual features as a function (e.g. difference) of
the posterior averaged on rectangular areas. Being N
the number of image pixels, even using the simplest
“rectangular-based” sampling, the number of potential
rectangles is NcN

2/2, which is clearly intractable per se.
To deal with such a high number of features, the classical
strategy is to perform an implicit feature selection by
boosting or use random forest as a basic classifier.

Table 1 summarizes the number of contextual features
for all the analyzed methods. To properly compare [24]

TABLE 1
# of contextual features as a function of Nc and Dmax.

Algorithm Number of contextual features

MS-CM [22] 8Nc(1 + log2 Dmax)
MS-SSL [21] 9Nc(1 + log2 Dmax)
Auto-context [19] Nc(1 + 4Dmax)
ICF [24] ∼ NcD4

max/8

to other methods, we define the maximal distance Dmax

as the diagonal of the image that, assuming square
images, is Dmax =

√
2N . This results in NcD

4
max/8

features. It is clear that, since all the methods sample the
posterior label field, the number of contextual features
grows linearly with Nc. However, to perform long range
interaction up to a certain distance Dmax, different meth-
ods require different number of contextual features. The
methods requiring less contextual features are MS-CM
and MS-SSL, while the one that requires more is ICF.
Thanks to the octave-based multi-scale decomposition
of MS-SSL and MS-CM, the number of features grows
logarithmically with the desired maximal distance of
interaction. On the contrary, pure sampling methods
require, for the same level of long-range interaction,
more contextual features. Moreover, the lack of Gaussian
(or any form of) filtering prior to sampling, induces
a loss of information and makes the algorithm more
sensitive to noisy posterior label fields.

Regarding label interaction, differently from graphical
models, sequential methods do not impose an explicit
modeling; all of the above mentioned sequential meth-
ods use contextual information as pure features, allowing
to delegate the classifier to learn their relationship. In our
humble opinion, this is the most important advantage
of sequential models over graphical models. However,
within sequential approaches, we think that mere sam-
pling of the posterior label field poorly models the con-
text. Our hypothesis is that the extraction of scale-space
shape descriptors of the posterior label field allows better
performance while requiring less contextual features. We
implement this strategy by means of the Scale-Space
Taylor coefficients.

4 STACKED SEQUENTIAL SCALE-SPACE TAY-
LOR CONTEXT (S4TC)

Our method is founded on the Scale-Space Taylor Con-
text descriptor embedded in the Stacked Sequential
Learning architecture [1].

4.1 Scale-Space Taylor Context

A data observation at position q can be described by
its feature vector x(q) ∈ R

Nx and its label c ∈ Y . In a
classification problem with Nc classes, let us assume the
existence of a functional f : R

Nx → [0, 1]1×Nc that
provides the (pseudo-) probability for a feature vector
to belong to each one of the classes. In correspondence
to a position q of the data domain Θ, a vector p(q) =

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2013.2297706

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



3

f(x(q)) ∈ [0, 1]1×Nc is obtained, such that the assigned
label can be computed as ĉ(q) = argc max(pc(q)). In the
rest of the paper we refer to the set of vectors p com-
puted over the data domain Θ as P ∈ [0, 1]Θ×Nc , which
represents the spatial distribution of the probabilities, for
each class, over the domain. We refer to P as the posterior
label field.

The value of P in a region Ω centered in the position
q0 can be approximated, following Lindeberg [25], by
means of the Taylor expansion, whose coefficients T σT

v,z

for images, omitting constants, are:

T σT

v,z (qo) =
∂v+zP ∗G(0, σT )

∂vx∂zy

∣

∣

∣

∣

qo

, (1)

where NT = v + z is the expansion order, with v ≥ 0
and z ≥ 0, and G(0, σT ) indicates a Gaussian filter of
zero mean value and standard deviation σT . Given the
desired maximum expansion order Nmax

T , we compute
the coefficients T σT

v,z for each order NT ≤ Nmax
T , each

scale σT and for each class c, which are concatenated to
form the contextual feature vector xT . Figure 1 (d) shows
the Taylor “sampling pattern” in form of spatial filters,
up to Nmax

T = 2. This representation is also known as N-
jet [26]; however, it has not to be confused to the N-jet
applied directly on image data. Here we are modeling
the context as the spatial relationship of values in the
posterior label field P .

With the proposed approach, given Nc classes and Nσ

scales, the Taylor-based feature vector xT is obtained by
concatenating Nc times Nσ vectors, thus the length of xT

grows as
(Nmax

T + 2)(Nmax
T + 1)

2
NcNσ. (2)

This approach has the advantage to allow modeling
the neighborhood complexity by simply increasing the
maximum Taylor order Nmax

T .
In all the experiments we define the Scale-Space by

means of a set of Gaussian standard deviations σT = 2ι,
where ι ∈ {0, 1, . . . , Nσ − 1}, i.e. in octaves, and Nσ is
the number of scales. If we desire to have long range
interactions up to a certain distance Dmax, the length of
our contextual feature grows as

(Nmax
T + 2)(Nmax

T + 1)

2
Nc(1 + log2 Dmax). (3)

Comparing equation (3) to Table 1, it can be noted that
our approach has less contextual features than all the
other ones by setting Nmax

T ≤ 2.
The maximum order of the expansion Nmax

T can be
selected according to the properties of the problem. This
is due to the different meaning that each order assumes.
The 0th order term is merely the sampling of a Gaussian
blurred version of P in the central pixel position, thus
providing information on the local probability of the
classes. The 1st order terms provide information about
transitions of the values, i.e. the presence of edges on the
posterior label field. The directionality of the transition is
completely encoded by the two terms in a continuos way.

Using the 1st order terms, the proposed method can deal
with spatial relationships between classes, coding their
relative position. The 2nd order terms can compactly
codify shapes like circular blobs, ellipses of any orien-
tation and eccentricity. This allows to codify multiple
transitions between classes in an area. The 3rd order
terms (and higher) codify far more complex shapes and
their utility in modeling semantic spatial relationship
should be estimated case by case.

Algorithm 1 Training

Require: Dtrain, Ytrain, Ni, γA, γS , γT
Ensure: {fi} {set of trained functionals for each i}

1: XA = γA(Dtrain)

2: x
(1)
T = ∅;

3: for i = 1:Ni do
4: x

(i)
E = [XA x

(i)
T ]

5: x̃
(i)
E = γS(x

(i)
E )

6: TRAIN fi|
{x̃

(i)
E

,γs(Y
(i)
train

)}

7: if i < Ni then
8: P(i) = fi(x

(i)
E )

9: x
(i+1)
T = γT (P

(i))
10: end if
11: end for

4.2 Training and Inference in SSL

To the sake of completeness we present training and
testing algorithms of our method, which are based on
an iterated version of SSL.
Training. The procedure for training S4TC is described
in Algorithm 1.

The requirements are: a dataset of training data Dtrain,
together with their corresponding labels Ytrain; a func-
tional γA for extracting appearance based features; a
functional γT for extracting the scale-space Taylor coef-
ficients, as in equation (1); a functional γS for randomly
subsampling a set of data. Following the procedure of
the SSL strategy [1], the subsampling operator γS must
ensure that at different iterations the classifier is trained
on disjoint subsets, i.e. γS(x

(i)
E ) ∩ γS(x

(j)
E ) = ∅ for each

pair of iterations i 6= j.
The training procedure consists in an iterative pro-

cess where a functional fi is trained at each iteration
i = (1, . . . , Ni), fed by the concatenation of data (or
appearance) and Taylor contextual features xT , namely
by the extended set xE (step 4). Before each training step,
a subset of xE is randomly selected as x̃E = γS(xE)
(step 5). The set x̃E , together with the corresponding

labels γs(Y
(i)
train), is then used to train a functional fi (step

6), successively applied to the whole training dataset
xE to compute the posterior label field P . Finally, the
contextual features xT are extracted by means of the
function γT (step 10), to be used in the next iteration. It is
worth noting that contextual information is not used to
train the functional f1 (step 2). The output of the training
procedure is the set of functionals {fi}.
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Algorithm 2 Inference

Require: {fi}, Dtest, γA, γT
Ensure: Y {label field for image Dtest}

1: xA = γA(Dtest)

2: x
(1)
T = ∅;

3: for i = i:Ni do
4: x

(i)
E = [xA x

(i)
T ]

5: P(i) = fi(x
(i)
E )

6: if i < Ni then
7: x

(i+1)
T = γT (P

(i))
8: end if
9: end for

10: Y = argc maxP(Ni)
c

Inference. The procedure for inference in S4TC is
described in Algorithm 2. Given a test datum Dtest

and the set of trained functionals {fi}, the appearance
based features are first extracted (step 1) and joined with
contextual features xT (step 4); as for training, at the first
iteration no contextual features exist (step 2). Applying fi
to x

(i)
E at each iteration produces the posterior P(i) (step

5), which is used to construct Taylor contextual features
xT , for the next iteration (step 7). The output label field is
computed as the maximum a posteriori over P(Ni) (step
11).

5 EXPERIMENTS

In this section we describe the experiments and datasets
used to evaluate the performance of S4TC. We selected
four datasets: the MSRC-21 is largely used to evaluate
context-aware methods; the eTRIMS8 and CAMVID are
datasets presenting highly structured label distributions;
and finally, the KAIST2 dataset is used to perform a
difficult in-painting task.

5.1 MSRC-21

In this section we provide the results of our method on
the MSRC-21 dataset [4].
Appearance features. We use features composed by
L*a*b* color, smoothed with a Gaussian filter at several
scales σA = {.25, .5, 1, 2, 4, 8} px; color SIFT on L*a*b*
channels at two patch size (24×24 and 48×48 px); Gaus-
sian weighted (σG = 8 px) color histogram of the a*b*
channels (with 169 bins); we also use a position prior
learned from the ground truth training labels, estimated
with a Kernel Density Estimator (σK = 4 px).
Computing P . In order to compute P we adopt the
Error-Correcting Output Codes framework [27] with One
Against All technique, which allows to decompose the
multi-class classification problem into a set Nc of binary
problems. A matrix of codes M ∈ {−1, 1}Nc×Nc is
obtained, and the value of the pseudo-probability is
p(c) ∝ exp−αdECOC(c), where dECOC(c) is the Euclidean
distance between the code obtained by concatenating
the output of all the binary classifiers and the ECOC
code corresponding to the label class c, using α =
ln(Nc)/

√
Nc. For this dataset, the binary classifier is

Support Vector Machine (SVM) with intersection kernel
[28]. In order to train SVMs, both data features and
contextual features are whitened and rescaled to the
range [0, 1] using the sigmoid function. At each iteration,
the SVM regularization parameter C has been tuned by
cross-folding optimizing the accuracy of the output of
the ECOC matrix. To have a tractable tuning process,
the value of C during tuning is shared by all the One
Against All SVM classifiers. Training has been performed
with 5000 samples per class using Ni = 5.

Table 2 shows the Global algorithm accuracy and
the Average class sensitivity from iteration 1 to 5, and
for different Taylor orders Nmax

T . At a first sight, it
could be surprising that, even with just the 0th order
Taylor coefficient, the algorithm is able to perform well.
However, this can be explained by the fact that the
scale-space filtering allows the classifier to learn, at
least, the most probable class combinations at different
scales, somehow learning the “scale-space co-occurence”
of labels. Nonetheless, first and second order coefficients,
as expected, consistently improve the results. When we
add the 3rd order contextual information (Nmax

T = 3), the
performance drops significantly. This can be explained
by the following sentence, excerpted from [29]: “[ . . . we
showed that SVMs can indeed suffer in high dimensional
spaces where many features are irrelevant.]”. The 3rd
order Taylor expansion indeed requires many features
(672). In order to quantify the relevance of 3rd order
features, we used the F-score [30], on the Taylor coeffi-
cients produced at the second iteration of the algorithm.
Results show that 3rd order Taylor coefficients are much
less relevant than lower orders, thus supporting our
hypothesis. This limitation of SVM can be overcome
by using a feature selection [29] or features weighting
algorithm [31]; however, this is out of the scope of the
present paper and, considering the results on eTRIMS8
and KAIST2, we do not expect it could provide clear
performance improvement.

The biggest improvement is provided by the second
iteration, where contextual features are used for the first
time by the algorithm. Subsequent iterations improve
both performance measures, but the increment at each
further iteration is smaller than the previous. This be-
havior is typical of SSL-based approaches, which exhibit
similar performance curves for other datasets [32], [22].
Table 3 shows the behavior of the algorithm while
adding scales, using Nmax

T = 2. It is clear that the long-
range interaction is a key component of the method; the
performance constantly increases while adding scales.
Table 4 shows a comparison between three sequential-
based methods plus four state-of-the-art methods and
S4TC. The row “Baseline-ST4C” shows the result of the
first iteration of our algorithm, where only appearance
features are used. The improvement due to our method
is significantly large for almost all classes (+22.5% on
average), and it is not negligible even for classes that had
already a good performance in the baseline result. Our
method presents the highest average sensitivity among
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TABLE 4
MSRC-21 dataset. Average provides the per-class sensitivity. Global gives the percentage pixel accuracy.
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MS Auto-context [20] 78 68 53 97 83 70 71 98 75 64 74 64 88 67 46 32 92 61 89 59 66 64 13
Auto-context [19] 77 69 69 96 87 78 80 95 83 67 84 70 79 47 61 30 80 45 78 68 52 67 27

MS-SSL [21] 83 78.6 63 93 94 92 89 96 96 69 86 78 92 86 68 56 85 60 82 86 62 78 42
Fully conn. CRF [33] 86 78.3 - - - - - - - - - - - - - - - - - - - - -

Hierar. w/ CO [16] 87 77 82 95 88 73 88 100 83 92 88 87 88 96 96 27 85 37 93 49 80 65 20
Harmony Pot. [17] 83 80 66 87 84 81 83 93 81 82 78 86 94 96 87 48 90 81 82 82 75 70 52
D-sampl. L+G [34] 79 78 50 83 87 81 84 90 97 72 75 79 90 95 79 52 97 81 80 89 51 64 60

Baseline-ST4C 66 58 36 92 71 59 64 89 81 59 72 46 70 57 41 35 61 29 71 44 42 59 30
ST4C (Nmax

T = 2, Ni = 5) 84 80.5 67 95 92 91 90 95 96 73 88 76 94 90 76 57 84 69 82 89 60 84 44

TABLE 2
Global Accuracy/Average sensitivity on MSRC-21

varying Nmax
T and Ni.

Nmax
T Ni = 1 Ni = 2 Ni = 3 Ni = 4 Ni = 5

0 66.2/57.6 78.3/73.3 80.4/76.6 81.6/78.0 81.9/78.8
1 66.2/57.6 79.9/75.0 82.0/78.0 83.1/79.2 83.6/80.2
2 66.2/57.6 80.9/76.2 82.7/78.8 83.7/79.7 84.0/80.5
3 66.2/57.6 79.9/74.8 81.7/76.8 82.2/77.3 82.6/77.9

TABLE 3
Global accuracy and average sensitivity using Nmax

T = 2,

Ni = 5, while varying the number of scales on MSRC-21.

σmax
T 1 2 4 8 16 32 64 128

Global 67.4 68.5 71.1 74.6 77.3 79.6 82.3 84.0
Average 60.2 61.9 65.1 69.0 72.5 75.4 78.8 80.5

all the compared algorithms, and the best sensitivity on
7 classes, with a remarkable 57% for the “bird” class.

Figure 2 shows 5 results of our method.
In the first row we show the test images, in the second

row the corresponding classification output at iteration
i = 1 (when no contextual information is used); in the
third row we show the classification output at iteration
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Fig. 2. Classification results for the MSRC-21 dataset.

i = 5; in the fourth row we also depict the manual
ground truth labeling, while in the last row we show
the pixel-wise entropy map computed over P(5) at the
last iteration. As a first observation, it is interesting to
note the effectiveness of the proposed architecture that,
thanks to the use of contextual features, dramatically
improves the labeling from iteration 1 to 5; in particular,
even in cases with completely unstructured initial results
(a, b, c), S4TC is able to achieve an accurate final labeling.
Furthermore, in cases where the final labels are less
accurate (e), the method still provides a semantically
consistent solution, with configurations of regions in the
image seen during the training procedure. The stability
(or instability) of such configurations is shown by the
entropy map, which in most of the cases clearly outline
the main regions of the image with low values, keeping
uncertainty around the label transitions.

5.2 eTRIMS8

The eTRIMS8 dataset consists of 60 pictures of buildings;
for each image, accurate pixel-wise manual annotation of
the following categories is provided1: building, car, door,
pavement, road, sky, vegetation, window. In this dataset, the
labels spatial distribution is highly structured, making
it a good benchmark to evaluate the proposed method
ability to represent context. We mimic the experiment
in [35], thus performing a five-folds cross-validation. To
get a fair comparison, we tuned our appearance features
to obtain a similar baseline result of approximately 66%
accuracy as in [35].
Appearance features. We use zero, first and second
order derivatives over the three L*a*b* chromatic chan-
nels of the image, over several scales with σA =
{1, 2, 4, 8, 16, 32} and a dense SIFT descriptor on 16× 16
patches over the L*a*b* channels.
Computing P . The base classifier is a SVM with Inter-
section Kernel. The functionals fi are obtained by com-
bining 8 classifiers in a One Against All fashion within
the ECOC framework. Training, tuning and inference is
done as for the MSRC-21 dataset.

1. www.ipb.uni-bonn.de/projects/etrims db/
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(a) (b) (c) (d) (e)

Fig. 3. Classification result on eTRIMS8 from iteration 1

(a) to iteration 4 (d) and ground truth labels (e).

Figure 3 shows an example of the results on a test
image.

As it can be noticed, the appearance based result
(a) is noisy and presents incorrectly classified regions.
The second iteration, which is the first accessing the
contextual features, corrects most of erroneous labels
that do not match the learned contextual configuration
(b), e.g. the wrongly classified door pixels at the second
floor of the house. Subsequent iterations refine the result
providing a sharp pixel-wise classification. It is worth
to note how the system learns the expected relative
spatial position of the classes: the pavement is correctly
classified only by its context, i.e. its spatial position w.r.t.
the road, vegetation and the building.

Table 5 shows the accuracy for different Taylor orders
Nmax

T . Increasing the Taylor order up to Nmax
T = 3

improves the algorithm performance, reaching up to
83.4%. However, with Nmax

T = 3 there is no increment
in accuracy with respect to Nmax

T = 2, showing that
the additional information provided by the third order
derivative is not useful to model the contextual spatial
relationship between classes. This is not surprising since
third order derivatives capture structures which are
not (or rarely) present in any label spatial pattern in
the eTRIMS8 dataset. Table 5 also shows a numerical
comparison with the Hierarchical CRFs method in [7],
the Multi-Scale Stacked Sequential Learning (MS-SSL)
in [21] and the facade parsing algorithm in [35]. It has
to be noted that the algorithm in [35] is specifically
designed to perform facade parsing, so that it uses a-
priori knowledge on architectural properties of facades.
With respect to the MS-SSL [21], which has been learned
with the same appearance features and classifier, S4TC
provides a higher accuracy with less contextual features.

5.3 CAMVID

In this section we present the results on the CamVid
dataset following the train/test split proposed in [36],
using 468 images for training and 233 for the test. The
settings of our algorithm are exactly the same as the ones
used for the MSRC-21 dataset for both appearance and
contextual features. As it can be noted in Table 6, our
method provides the best Average sensitivity w.r.t. to all
previous methods. It has to be noted that while we use
solely appearance and context information, some of the
state-of-the-art methods use additional structure-from-
motion and/or depth maps information.

TABLE 5
eTRIMS8 performance comparison.
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Hier. CRF [7] 67 36 14 85 53 80 78 80 65.8 69.0
MS-SSL [21] 82 57 68 55 68 99 92 79 66.4 81.9

Facade parsing [35] 90 66 20 35 47 90 83 75 65.8 81.9
RF approach [24] 71 77 71 70 73 95 90 64 - 75.1

ST4C, Nmax
T = 0 76 67 73 49 65 99 92 78 66.4 79.4

ST4C, Nmax
T = 1 79 55 69 50 70 99 92 78 66.4 80.8

ST4C, Nmax
T = 2 83 54 75 57 80 99 92 78 66.4 83.4

ST4C, Nmax
T = 3 84 51 73 55 81 99 92 78 66.4 83.4

Fig. 4. Some exemplar results of S4TC on KAIST2.

5.4 KAIST2 dataset

In this section we present the results of the proposed
method on the problem of in-painting chinese characters
using the KAIST2 dataset. We reproduced exactly the
same experiment proposed in [15], using 300 binary
images for training and 100 images for testing. The
experiment is meant to measure the ability of a method
to learn the implicit structure of chinese characters in
order to recover the original from the corrupted one.
Figure 4 (first row) shows some examples of chinese
characters from the dataset, together with its corrupted
version (second row), where the gray square represents
the “deleted” area; last row shows the reconstruction by
S4TC.

The experiment is extremely interesting since there
is no way to use local appearance features, due to the
fact that the region to be in-painted is totally erased.
Moreover, the chinese character structure is complex,
so that the problem is not of mere interpolation, but it
is more related with hallucinating the correct (or most
probable) structure likely to match the visible part of the
character. In this experiment we iterate the algorithm up
to Ni = 4 iterations.
Computing P . For this experiment, with the aim to be
directly comparable to [15], we use Random Forest with
100 trees, using 3000 samples per class at each iteration.
Since it is a binary classification problem, the posterior
provided by Random Forest is used to build P without
the need of the ECOC framework.

Table 7 shows the accuracy of S4TC varying the Taylor
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TABLE 6
Performance comparison for the CAMVID dataset.
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Sturgess et al. [37] 84.5 72.6 97.5 72.2 34.1 95.4 34.2 45.7 8.1 77.6 28.5 59.2 83.8
Zhang et al. [38] 85.3 57.3 95.4 69.2 46.5 98.5 23.8 44.3 22.0 38.1 28.7 55.4 82.1
Floros et al. [39] 80.4 76.1 96.1 86.7 20.4 95.1 47.1 47.3 8.3 79.1 19.5 59.6 83.2

Ladicky et al. [40] 81.5 76.6 96.2 78.7 40.2 93.9 43.0 47.6 14.3 81.5 33.9 62.5 83.8
Tighe et al. [41] 83.1 73.5 94.6 78.1 48.0 96.0 58.6 32.8 5.3 71.2 45.9 62.5 83.9

Baseline-ST4C 47.3 57.6 93.3 67.8 35.5 85.8 69.8 39.7 39.2 69.7 24.0 57.2 70.5
ST4C (Nmax

T = 0, Ni = 4) 55.6 72.8 93.6 79.2 36.9 89.2 74.2 54.2 40.6 76 42.4 65.0 76.6
ST4C (Nmax

T = 1, Ni = 4) 54.3 71.9 93.4 79 43.4 90.9 72.5 51.8 43.3 72.6 39.3 64.7 76.2
ST4C (Nmax

T = 2, Ni = 4) 55.7 71.9 93.6 75.5 43.2 91.4 74.2 53.5 47.4 74.2 41.8 65.7 76.9
ST4C (Nmax

T = 3, Ni = 4) 53.8 71.1 93.5 75.5 40.6 91.7 74.8 53.6 48.6 74.3 39.6 65.2 76.4

TABLE 7

Accuracy on KAIST2 varying Nmax
T and Ni.

Ni = 1 Ni = 2 Ni = 3 Ni = 4

Nmax
T = 0 57.07 73.90 73.99 73.74

Nmax
T = 1 57.07 74.68 74.05 74.45

Nmax
T = 2 57.07 77.92 79.33 79.72

Nmax
T = 3 57.07 77.57 77.96 78.37

TABLE 8
KAIST2 performance comparison.

DTF [15] MS-SSL [21] SLP [14] S4TC

Accuracy 76.01 76.9 78.08 79.72
# Params 64 54 64 (16× 4) 24

order at different iterations.

Using Nmax
T = 0 the contextual information is merely

a low pass filtering of neighbor character strokes; in
this case the accuracy is 73.74%. When information on
first derivatives is added, the performance increases to
74.45%, but when second order information is included,
the system accuracy reaches 79.72%. This increment
in performance is due to the fact that second order
derivatives can encode ellipses and blobs, approximating
strokes, dots and holes in chinese characters. It is also
worth noticing that using up to the third order derivative
does not add useful contextual information.

Table 8 shows comparison between S4TC and three
state-of-the-art methods for KAIST2 in terms of accu-
racy and number of required parameters. As it can be
noted, using the S4TC optimal configuration (Nmax

T = 2,
σmax
T = 4) allows to outperform previous results in terms

of accuracy, while using much less parameters2. This
clearly shows that the Scale-Space Taylor coefficients are
both expressive and compact.

2. Following equation (3), the number of contextual features for
S4TC results in 48. However, since the Taylor context is linear, and
the problem is binary, half of the features are linearly correlated, so
that can be safely removed.

6 DISCUSSION

The presented results confirm that modeling the shape of
posterior label field within a scale-space decomposition
provides better results and less contextual features than
classical sequential methods, such as the MS-SSL and, in
general, better than state-of-the-art graphical methods.

In all experiments, the maximum Taylor degree that
provided best results is Nmax

T = 2. This is not surprising,
since local average, gradient and Hessian matrix are
well known effective descriptors of local properties of
an image. The use of a very basic descriptor to encode
local shape of the posterior label field demonstrated to
be a simple yet efficacious strategy to extract contextual
information. Higher Taylor orders seem not to provide
relevant information; this can be explained by the fact
that, in natural images, there are no complex spatial label
patterns that require the use of 3rd order Taylor coeffi-
cients. Nonetheless, for other kinds of sequential data,
e.g. for audio signals, the 3rd order Taylor coefficients
could be useful to model alternating patterns.

The scale-space approach offers a very efficient way of
representing the data at different sizes, so that it allows
to learn expected “size” of objects in terms of posterior
label field instead of their image appearance; and also
their co-occurence at different scales.

Using Nmax
T = 2, S4TC requires a number of contextual

features that grows as 6Nc(1 + log2 Dmax). Comparing
this to other methods in Table 1, it can be noted that
S4TC requires less contextual features that any other
sequential algorithm, while outperforming them in all
the experiments. The most relevant aspects of having
the lowest number of contextual features is that we can
train powerful classifiers providing all the contextual
information at once, allowing to learn complex rela-
tionships between labels. We believe that implicit or
explicit feature selection could potentially hinder the
possibility of learning less frequent (or more complex)
label configurations.

As for other sequential methods, it can be demon-
strated that S4TC monotonically decreases the training
error trough iterations [19]. In S4TC, being based on
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the Stacked Sequential scheme, the modeling of inter-
action between appearance and context is delegated to
the classifier. This appears to be a relevant issue, as
demonstrated by the increasing interest in learning label
interaction also in graphical models [13], [14], [15].

7 CONCLUSION

In this paper we presented Stacked Sequential Scale-
Space Taylor Context. S4TC outperforms state-of-the-
art algorithms on four datasets: MSRC-21, eTRIMS8,
CAMVID and KAIST2. Due to its modularity, we ex-
pect the method to be able to deal with other kind of
sequential data, and generalize to higher dimensional
data (volumes or videos) due to its good scalability.
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