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a b s t r a c t 

By definition, local image features provide a compact representation of the image in which most of the 

image information is preserved. This capability offered by local features has been overlooked, despite 

being relevant in many application scenarios. In this paper, we analyze and discuss the performance of 

feature-driven Maximally Stable Extremal Regions (MSER) in terms of the coverage of informative image 

parts (completeness). This type of features results from an MSER extraction on saliency maps in which 

features related to objects boundaries or even symmetry axes are highlighted. These maps are intended to 

be suitable domains for MSER detection, allowing this detector to provide a better coverage of informative 

image parts. Our experimental results, which were based on a large-scale evaluation, show that feature- 

driven MSER have relatively high completeness values and provide more complete sets than a traditional 

MSER detection even when sets of similar cardinality are considered. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Local image feature detection has been a prolific research topic

n the fields of computer vision and image analysis, mostly due

o the fundamental role it plays in a number of prominent tasks.

ocal feature detection is often found as the first step of effective

lgorithms targeted at solving a diversity of problems such as

ide-baseline stereo matching, camera calibration, image retrieval,

nd object recognition. Using a sparse set of locally salient and po-

entially overlapping image parts – the so-called image features –

ffers two immediate advantages: (i) the existence of many and

ossibly redundant patches ensures robustness; (ii) by keeping

nly informative image parts, a compact image representation is

onstructed and, subsequently, the amount of data for further pro-

essing is reduced. Depending on the application domain, there are

ther properties that local features should exhibit. For example, for

atching tasks, it is fundamental to have repeatable and accurate

eatures. That is, the detector should accurately respond to the

the same” features on two different images of the same scene,

egardless of the underlying image transformation. Additionally,

eatures should be distinctive, i.e., the patterns in the immediate

urroundings of the features should show a significant degree of
✩ This paper has been recommended for acceptance by Punam Kumar Saha. 
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ariation among themselves. Such property allows local features

o be easily distinguished through the use of local descriptors. 

Given the importance of repeatability in a wide range of appli-

ation domains, most studies on local feature detection have been

ocused on the design of repeatable detectors. Currently, there are

arious algorithms (e.g., Harris- ,Hessian-Affine [30] or HarrisZ [4] )

hich are able to detect features with a high repeatability rate

ven in the presence of severe image transformations, such as

iewpoint changes. 

The introduction of robust local descriptors (e.g., SIFT [25] ,

URF [2] , or sGLOH [3] ) has contributed to set a new paradigm in

ocal feature detection. Besides matching patches on an individual

asis, the combination of local descriptors and local features has

nabled the construction of robust image representations [39] ,

hich is particularly useful to solve problems in which a seman-

ical interpretation is involved, such as the tasks of recognizing

bjects, classifying scenes, or retrieving semantically equivalent

mages. Unlike repeatability, the study of robust and compact

mage representations by means of local features has been over-

ooked. This could be partially explained by the success of dense

ampling-based representations [5,13,36,40] in object and scene

ecognition, which is a simpler strategy that uses local descriptors

ensely sampled on a regular grid. 

While dense sampling is a well-established and successful

trategy for object and scene recognition, there are other appli-

ation domains, namely emerging ones, that could benefit from

obust and simultaneously compact (sparse) image representations

http://dx.doi.org/10.1016/j.patrec.2016.01.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2016.01.003&domain=pdf
mailto:pjmm@dei.uc.pt
http://dx.doi.org/10.1016/j.patrec.2016.01.003
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Fig. 1. An example of standard MSER detection. Either the boundaries of objects or 

other contours are responsible for delineating MSER features. For a better visualiza- 

tion, the original MSER were replaced by fitting ellipses. 
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via local features. The development of inexpensive cameras and

storage has boosted the creation of significantly large image and

video databases. In such databases, search and retrieval mecha-

nisms only make sense if they are efficiently performed [1,26] . The

use of local-feature based robust image representations might be a

starting point to ensure such efficiency. This scenario emphasizes

the importance of analyzing the completeness of features as well

as the complementarity between different types of features. Here,

completeness means the amount of image information preserved

by the local features [10,16] , whereas complementarity reflects

how different two or more types of features are. 

In the large-scale completeness and complementarity test per-

formed by Dickscheid et al. [10] , the Maximally Stable Extremal

Regions (MSER) [29] showed remarkable overall results: they had

significantly higher completeness values compared to other types

of local features of similar sparseness. In fact, the MSER complete-

ness values were comparable with the ones of Salient Regions [19] ,

which appear in a substantially higher number. 

In this paper, we extend the study on feature-driven Maximally

Stable Extremal Regions (fMSER) [27,28] , which are a derivation

of MSER features and aimed at overcoming some limitations of

a regular MSER detection. Our main goal is to analyze the com-

pleteness and complementarity of different fMSER. In other words,

we are interested in assessing the potential suitability of this type

of features for application domains requiring robust image repre-

sentations via the use of local features. As a result, we present a

large-scale evaluation test in which fMSER and MSER are studied

in terms of completeness and complementarity. 

The remainder of this paper is organized as follows. Section 2

introduces definitions and notations that will be followed through-

out this document and presents the motivation behind the con-

struction of feature-driven MSER. Section 3 covers the derivation of

several instances of fMSER features from standard MSER. An eval-

uation of the completeness and complementarity of feature-driven

MSER is presented in Section 4 . Finally, conclusions and perspec-

tives are given in Section 5 . 

2. Background and motivation 

Boundary-related semi-local structures such as edges and

curvilinear shapes are known for being more robust to intensity,

color, and pose variations than typical interest points (e.g., corner

points). Some local feature detectors explicitly or implicitly take

advantage of this robustness by detecting stable regions from

semi-local structures, such as the Edge-based Regions (EBR) de-

tector [37,38] , which is based on edge detection, or the Principal

Curvature-Based Regions (PCBR) detector [9] , which is based on

line detection. These two examples use the detection of boundary-

related structures to generate the final regions. The Maximally

Stable Extremal Regions (MSER) detector [29] implicitly takes ad-

vantage of the robustness of boundary-related structures without

detecting them. In fact, the MSER detector is in its essence an

intensity-based region detector dealing with connected compo-

nents and extracting extremal regions that are stable to intensity

perturbations. 

The use of boundary information in the construction of local

features is not only advantageous in terms of robustness. The se-

mantic meaningfulness of boundary information is equally rele-

vant, as it allows local features to capture informative image parts,

which contributes to the construction of intuitive object represen-

tations [21] . 

When the goal is to ensure a robust image representation in an

efficient manner via the use of local features, the MSER detector

appears as a suitable option. Extremal regions can be enumerated

in almost linear time, which makes the MSER detector one of the

most efficient solutions for local feature detection. Additionally, the
esults from the large-scale completeness evaluation performed by

ickscheid et al. [10] showed that MSER features provide a rela-

ively robust image representation despite their sparseness. 

Feature-driven MSER [28] were initially proposed as an attempt

o overcome the typical shortcomings of a standard MSER detec-

ion, namely the lack of robustness to blur, the reduced number of

egions, and the biased preference towards round shapes [20] . By

etecting more regions on informative parts of the image, feature-

riven MSER represent an improvement over standard MSER in

erms of completeness. 

.1. Maximally stable extremal regions 

Affine covariant regions can be derived from extremal regions.

n the image domain, an extremal region corresponds to a con-

ected component whose corresponding pixels have either higher

r lower intensity than all the pixels on its boundary. Extremal re-

ions hold two important properties: the set of extremal regions is

losed under continuous transformations of image coordinates as

ell as monotonic transformations of image intensities. The Max-

mally Stable Extremal Regions detector responds to extremal re-

ions that are stable with respect to intensity perturbations (see

ig. 1 ). For a better understanding of the MSER detector, we intro-

uce the formal definitions of connected component and extremal

egions [33] . 

A connected component (or region) Q in D is a subset of D
or which each pair of pixels ( p , q ) ∈ Q 

2 is connected by a path

n Q , i.e., there is a sequence p , a 1 , a 2 , . . . , a m 

, q ∈ Q such that p ∼
 1 , a 1 ∼ a 2 , . . . , a m 

∼ q , where ∼ is the equivalence relation defined

y ( p ∼ q ) ⇐⇒ max { | p 1 − q 1 | , | p 2 − q 2 | } ≤ 1 (8-neighborhood). 

We define the boundary of a region Q as the set ∂Q = { p ∈
\Q : ∃ q ∈ Q : p ∼ q } . A connected component Q in D is an ex-

remal region if ∀ p ∈ Q , q ∈ ∂Q : I( p ) < I( q ) or I( p ) > I( q ) . 

Let Q 1 , Q 2 , . . . , Q i −1 , Q i , Q i +1 . . . be a sequence of extremal

egions such that Q k ⊂ Q k +1 , k = 1 , 2 , . . . . We say that Q i is

 maximally stable extremal region if and only if the stability

riterion 

(k, �) = 

| Q k +� \ Q k | 
| Q k | (1)

ttains a local minimum at i , where � is a positive integer denot-

ng the stability threshold. As the area ratios are preserved under

ffine transformations, ρ is invariant with respect to affine trans-

ormations. Consequently, MSER features become covariant with

his type of geometric transformations. 

.1.1. Advantages 

As already mentioned in the introductory section, MSER tend

o provide a good coverage of informative image parts, despite
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Fig. 2. Using the gradient magnitude to detect feature-driven MSER on images 1 and 3 of Bikes sequence [31] . Top row: standard MSER; bottom row: feature-driven MSER. 
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heir typical sparseness. In addition, MSER can be efficiently de-

ected. Extremal regions can be enumerated in almost linear time,

hich is a significant advantage of the MSER detector over other

ffine covariant regions detectors. Note that other popular algo-

ithms for the detection of affine covariant features are usually

ore computationally expensive. For example, Harris-Affine and

essian-Affine algorithms [30] detect initial points in linear time;

owever, this task is complemented with an automatic scale selec-

ion and an affine shape adaptation algorithm whose complexity is

(p(s + k )) , where p is the number of initial points, s is the num-

er of scales, and k is the number of iterations required for shape

daptation [31] . 

.1.2. Disadvantages 

In the large-scale comparative study on affine covariant regions

erformed by Mikolajczyk et al. [31] , MSER and Hessian-Affine

eatures showed higher repeatability scores. However, the MSER

etector showed an inconsistent performance: blurred sequences

f images as well as textured sequences produced less repeatable

eatures. The low repeatability scores in the above-mentioned

onditions is a well known downside of MSER detection. The

ensitiveness to image blur can be explained by the undermining

ffect that blur has on the stability criterion: by applying different

evels of blur, we change the area of extremal regions. Additionally,

s the blurring effect increases, the number of extremal regions

ecreases. As for textured scenes, they are not a suitable domain

or MSER detection since intensity perturbations cause an irregular

rea variation of extremal regions in busy parts of the image.

he preference for round shapes is another downside of this

etector [20] . 

.1.3. Derivations and applications 

Over the years, different derivations of the MSER detector

ave been proposed. For example, the MSER algorithm has been

odified to deal with volumetric [11] and color images [14] . Some

uthors have proposed efficiency enhancements [12,32,34] or a

uti-resolution version [15] . 

With regard to applications, MSER features have been used in

everal heterogeneous tasks, such as matching [15] , tracking [12] ,

oad traffic sign recognition [17] , or text detection [8] , among

thers. 
. Feature-driven maximally stable extremal regions 

The ideal image for the MSER detector is the one that is well-

tructured, with uniform regions separated by strong intensity

hanges [39] . A feature-driven MSER is a region resulting from

n MSER detection on a saliency map in which boundary-related

eatures are highlighted. To perform robust text detection, [8] fol-

owed a similar strategy, which consisted of performing an edge-

nhanced MSER detection based on the Canny edge detector [7] .

n our case, a simple and straightforward highlighting such as a

ingle-scale edge highlighting will not be advantageous. To illus-

rate this, we can think of a measure of the edge response such as

he gradient magnitude computed at a single scale. Fig. 2 depicts

 feature-driven MSER detection based on a single-scale gradient

agnitude under the presence of blur induced by de-focus. In the

xample given, one can observe that the proposed feature high-

ighting neither reduces the typical sparseness of standard MSER

or improves the robustness to blur. An edge response computed

t a single scale is rarely sufficient to capture the presence of all

he boundaries in a scene. In addition, the induced blur weakens

he edge response. 

Another alternative is to consider feature highlighting via

nisotropic diffusion [35] . With an anisotropic diffusion, there

s the clear advantage of preserving details and simultaneously

lurring noise, which appears to be ideal for constructing a

uitable domain for MSER detection. Nonetheless, anisotropic

iffusion has a relatively high computational complexity. One

f our aims is that feature-driven MSER detection preserves the

ajor advantages of a standard MSER detection, which means

hat the computational complexity of the whole method should

e kept low. Such requirement hinders the use of non-linear scale

paces, even if we consider more efficient solutions to anisotropic

iffusion [e.g., 18] . 

Given the constraints in terms of computational complexity,

e opt for a linear (Gaussian) scale-space representation in which

e highlight boundary-related features and simultaneously delin-

ate smooth transitions at the boundaries. On one hand, the fea-

ure highlighting allows us to have well-defined boundaries, which

ends to increase the number of stable extremal regions with re-

pect to intensity perturbations. On the other hand, the existing

moothness at the boundaries attenuates the undermining effect

hat blurring has over the MSER detector. 
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The saliency maps in which the boundary-related features are

highlighted are given by the following equation: 

F ( x ) = 

N ∑ 

i =1 

σ k 
i S(x , σi ) , (2)

where N denotes the number of scales, σ i is the i th scale, with

σi = ξσ i −1 
0 

( ξ ∈ R 

+ , σ 0 > 1), i.e, scale varies in a geometrical se-

quence, S ( x , σ i ) measures the response of a boundary-related fea-

ture at pixel x and scale σ i and k is the parameter required to

construct normalized scale-space derivatives [24] . 

The feature-driven MSER detector can be seen as a hybrid be-

tween the MSER algorithm and the PCBR detector, since we make

use of structural information (shapes) to define suitable domains

for MSER detection. The idea is to combine the advantages of PCBR

detection (explicit use of structural information) with the advan-

tages of MSER detection (computational efficiency, repeatability,

and accuracy) and simultaneously overcome some of the major

limitations of the latter, namely the lack of robustness to blur-

ring and the biased preference for round shapes. We present three

different ways of highlighting boundary-related features, namely

edges and lines. 

3.1. Edge highlighting 

To highlight edges, we explore two differential-based measures.

For our purpose, there is not a clear advantage of one measure

over the other. In fact, even though they highlight the same struc-

ture, they can be combined in the construction of sets of comple-

mentary fMSER. 

3.1.1. Edge highlighting (version 1) 

Let L (:, σ ) be a smoothed version of an image I by means of

a Gaussian kernel G at the scale σ , i.e., L ( x , σ ) = G (σ ) ∗ I( x ) . The

edge strength can be found by measuring the gradient magnitude,

S g (x , σ ) = | ∇L (x , σ ) | def = 

√ 

L 2 x (x , σ ) + L 2 y (x , σ ) , (3)

where L x and L y denote the first-order partial derivatives of L in

the x and y directions, respectively. 

3.1.2. Edge highlighting (version 2) 

The second measure is based on the eigenvalues of the struc-

ture tensor matrix. Near edges, at least one of the eigenvalues is

large, while in flat areas, both values tend to zero. This suggests

the use of the maximum eigenvalue – λ2 – as a measure of edge

strength. However, the range of values found for the maximum

eigenvalue is considerably wide. To obtain a more balanced output,

the natural logarithm is used [22] : 

S μ(x , σ ) = max { 0 , log (λ2 (μ(x , σ ))) } , (4)

where μ( x , σ ) is the structure tensor matrix computed at pixel x

and scale σ : 

μ(x , σ ) 
def = G (σ ) ∗

[
L 2 x (x , sσ ) L x L y (x , sσ ) 

L x L y (x , sσ ) L 2 y (x , sσ ) 

]
. (5)

In (5) , the parameter s is a real value in the range ]0, 1] required

to keep the derivation scale lower than the integration scale. 

3.2. Line highlighting 

To highlight curvilinear structures, the principal curvature [9] is

used. The measure for line highlighting is derived from the Hessian

matrix: 

H(x , σ ) 
def = 

[
L xx (x , σ ) L xy (x , σ ) 
L xy (x , σ ) L yy (x , σ ) 

]
, (6)
here L xx , L xy and L yy are the second order partial derivatives of L ,

 Gaussian smoothed version of image I . The principal curvature,

hich highlights curvilinear structures is either given by 

P max ( x , σ ) = max (0 , λ2 (H( x , σ ))) (7)

r 

 min ( x , σ ) = min (0 , λ1 (H( x , σ ))) , (8)

here λ1 and λ2 denote the minimum and maximum eigenval-

es, respectively. Note that (7) and (8) respond to complementary

tructures: the former responds to dark lines on a brighter back-

round, whereas the latter detects brighter lines on a dark back-

round. Our line highlighting measure uses the principal curvature

easure to detect darker lines on a bright background. However,

he measures defined in (7) and (8) can be used interchangeably:

 H 

(x , σ ) = max { λ2 (H(x , σ )) , 0 } . (9)

.3. Saliency maps 

In Fig. 3 , we depict the proposed feature highlighting using sev-

ral scales. These three instances of the proposed feature highlight-

ng provide well-defined boundaries accompanied with smooth

ransitions. It is readily seen that any of the three saliency maps

reserves the structural information of the image and adds some

moothness to the scene (the number of scales and the number of

cales play an important role in the definition of blur). While the

wo types of edge highlighting mainly capture and accentuate ob-

ects boundaries, the proposed line highlighting provides a clearer

tructural sketch of the scene [9] . At first glance, the blur induced

y the feature highlight is an undesirable property, as it tends to

educe the localization accuracy of the objects. However, this type

f blur becomes advantageous in recognition tasks, namely object

lass recognition in which intra-class variations are desirable. 

. Comparative evaluation 

As already mentioned, we are primarily interested in analyzing

he completeness and complementarity of fMSER features. In our

revious works, we showed that these regions appear in higher

umber than standard MSER and since they tend to cover salient

mage elements, fMSER features will be more complete. However,

ur previous studies have never been focused on analyzing the

ompleteness of fMSER and MSER features when there is not a dis-

repancy in the number of detected regions. Here, we will perform

 large-scale completeness and complementarity evaluation using

 similar number of regions. 

We followed the evaluation protocol proposed by Dickscheid

t al. [10] to measure the completeness as well as the com-

lementary of feature-driven MSER. This comparative study is

omplemented with the analysis of the coverage of globally salient

lements. 

The dataset used in the evaluation ( Fig. 4 ) comprised four cate-

ories of natural scenes [13,23] , the Brodatz texture collection [6] ,

nd a set of aerial images. This set of image categories corresponds

o the dataset used by Dickscheid et al. [10] , with the exception

f a collection of cartoon images, which was not made publicly

vailable. 

To measure completeness, Dickscheid et al. [10] compute an

ntropy density p H ( x ) based on local image statistics and a fea-

ure coding density p c ( x ) derived from a given set of features

see Appendix A ). The (in)completeness measure corresponds to

he Hellinger distance between the two densities: 

 H (p H , p c ) = 

√ 

1 

2 

∑ 

x ∈D 
( 
√ 

p H (x ) −
√ 

p c (x ) ) 2 , (10)
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Fig. 3. Proposed feature highlighting. Darker structures in the saliency maps are the most salient ones. The parameters ξ and σ 0 were set to 1 and 
4 
√ 

2 , respectively. For 

edge highlighting based on the eigenvalues of the structure tensor matrix, the factor s ( Eq. (5) ) was set to 0.5. 

Fig. 4. Example images from the categories in the dataset for completeness and complementarity evaluation. 
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here D is the image domain. When p H and p c are very close, the

istance d H will be small, which means the set of features with a

oding density p c effectively covers the image content (the set of

eatures has a high completeness). Such metric penalizes the use

f large scales (a straightforward solution to achieve a full cov-

rage) as well as the presence of features in pure homogeneous

egions. On the other hand, it will reward the “fine capturing” of

ocal structures or superimposed features appearing at different

cales. 

We built the saliency maps with ξ = 1 , σ0 = 

4 
√ 

2 , and N = 12 .

or the edge highlighting based on the eigenvalues of the structure

ensor matrix, the size of the local (derivation) scale was set to half

f the size of the integration scale ( s = 0.5 in Eq. (5) ). The stabil-

ty threshold � was set to 7 for all the instances of the fMSER,

hereas for the MSER detector, this parameter was set to 5. The

inimum and maximum region areas were set to 30 and 1% of

he image area, respectively. We only considered MSER and fMSER

eatures whose ρ was lower than 1.0. These parameter settings al-

owed us to have a similar number of regions among the different

ype of features. Note that the saliency maps produced by the pro-

osed feature highlighting allow us to capture more extremal re-

ions than the luminance channel of an image, as shown in Fig. 5 . 

The implementation of the MSER detector corresponds to the

ode provided by [41] . For fMSER features, this code was modified

o deal with images whose intensity values vary in a range differ-

nt from {0, . . . ,255}, since the saliency maps intensity values might
e greater than 255. To compute the coding and entropy densities,

e used the code provided by Dickscheid et al. [10] . The number of

cales used to compute the entropy density was 6 (default value). 

Fig. 6 summarizes the results of our completeness evaluation.

or reference, we have also included Salient Regions results in

hese plots. The main conclusion to be drawn from the plots is

hat any instance of fMSER detection provides us a more complete

et of features than the one comprised of standard MSER, even

hen the number of regions is similar. In all categories, with

he exception of Brodatz, we observe that MSER features are the

east complete regions. Among feature-driven regions, it is not

lear the advantage of one instance over the other ones. The three

nstances provide similar completeness values, although they are

lightly higher than the ones obtained with the Salient regions

etector, which provides a considerably higher number of features.

dge2-MSER results are particularly worth of note: they appear in

ower number in the Mountain category; however, they are the

ost complete instance of fMSER. The results for Brodatz category

re explained by the fact that it only contains highly textured

mages, which enables the creation of very small and duplicated

xtremal regions in the saliency maps. In either cases, the regions

ere discarded. 

To assess complementarity, we constructed all possible combi-

ations of pairs of MSER and fMSER features for the first 20 im-

ges of each category. Fig. 7 depicts the completeness values for

he different combined sets of features. Overall, these combinations
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Fig. 5. Number of extremal regions provided by the saliency maps (edge-, edge2-, line-MSER) and the luminance channel (MSER) for the different categories of the dataset. 

Error bars indicate the standard deviation. 
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Fig. 6. Completeness results. Top row: Average dissimilarity measure d H ( p H , p c ) for the different sets of features extracted over the categories of the dataset. Bottom row: 

Average number of extracted features per image category. Error bars indicate the standard deviation. 
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are advantageous. An important observation to be drawn from the

plot is that there is some redundancy between MSER and line-

MSER features. Despite the latter showing a good coverage of in-

formative parts, as seen in Fig. 6 , the combination of both type

of features is the least advantageous. This result is partially ex-

plained by the fact that line-MSER features are detected on a map

that provides a clearer structural sketch of the image; therefore,

the extracted regions will not differ too much from the ones ex-

tracted from the luminance channel. On the other hand, the com-

bination edge2-MSER+line-MSER tends to yield the most complete

results. 

We complemented our evaluation with an analysis of the cov-

erage of globally salient image parts in the first 20 images of each
ategory. By computing the Hellinger distance between the feature

oding density and a density derived from the map given by the

oolean Map-based Saliency (BMS) model [42] , we were able to

easure the coverage of globally salient parts. Fig. 8 summarizes

hese results. 

For this type of coverage, fMSER features outperform MSER

nes, being the exception the case of highly textured images (Bro-

atz). Among fMSER features, edge-MSER and line-MSER usually

ave the best performance. Conversely, the results show that the

overage of globally salient elements provided by edge2-MSER is

lightly worse. Such fact is explained by the existence of noisier

nd less accurate edge maps, which can lead to extremal regions

nchored at homogeneous regions. 
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Fig. 7. Complementarity results. Average dissimilarity measure d H ( p H , p c ) for the different sets of combined features extracted over the categories of the dataset. 
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. Conclusions and perspectives 

Feature-driven Maximally Stable Regions were initially pro-

osed as an attempt to overcome some of the typical shortcom-

ngs of a standard MSER detection, namely the lack of robustness

o blur and the reduced number of regions. This is achieved by us-

ng a particular type of saliency maps as the input image for MSER

etection. In these maps, boundary-related features are simulta-

eously highlighted and delineated under smooth transitions. As

or the number of regions, the novel features are in a substantially

igher number than standard MSER ones. The study presented in

his paper showed that the feature-driven regions do not only pro-

ide a better coverage of the informative content when the num-

er of feature-driven regions is higher but also when a similar

umber of regions is used. 

Since these regions can be obtained from different boundary-

elated features, it is fundamental to measure the level of

omplementarity among the various instances. Although they tend

o provide similar regions, there is still some complementarity

hat can be exploited, as shown by our study. 

As for the applicability of feature-driven MSER, we believe that

mage compression is a particularly interesting domain. This is not

nly due to the fact that they capture the most informative parts

robust representation) but also to the fact that an efficient algo-

ithm is responsible for their detection. Cloud-based compression

nd image set compression are two current and relevant problems

elated to image compression where the use of fMSER features

ould be exploited. In both scenarios, compact robust image rep-

esentations are usually obtained via the use of local descriptors.

y computing such descriptors over fMSER features, one can ef-
 I  
ciently obtain robust representations with a reduced number of

egions per image. 

ppendix A. Feature coding and entropy densities 

The entropy density p H is computed from local image patches

ith different sizes (scales). It is assumed that these patches rep-

esent a larger image, i.e., an N × N patch is part of a periodic

mage with period N in both directions. In addition, an image is

onsidered to be a noisy version of a Gaussian process. From these

ssumptions, the entropy of an image patch g can be derived as

ollows: 

(g) = 

1 

2 

log 2 

(
2 π exp 

(
det 	gg 

σ 2 
n 

))
, (A.1) 

here 	gg represents the covariance matrix of the intensity values

n g and σ 2 
n is the noise variance. The determinant of 	gg is de-

ived from the power spectrum P (u ) = | DCT (g(x )) | 2 , i.e., det 	gg =
 

u \{ 0 } P (u ) , where 0 is the DC coefficient. By assuming that the

owerspectrum is additively composed of the powerspectra of the

ignal and the noise, the following estimate of the power spectrum

an be used: 

ˆ 
 (u ) = max (P (u ) − σ 2 

n , 0) , (A.2)

nd (A.1) becomes 

 ( x ) = 

1 

2 N 

2 

∑ 

u \{ 0 } 
max 

(
log 2 

(
2 π exp 

(
ˆ P (u ) 

σ 2 
n 

))
, 0 

)
. (A.3) 

he entropy at a pixel x will be obtained from the patches entropy.

f H ( x , N ) is the entropy of a pixel x based on a patch of size N , the
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entropy at pixel x is 

H(x ) = 

S ∑ 

s =1 

H(x , 1 + 2 

s ) , (A.4)

where s ∈ { 1 , . . . , S} denotes the scale. Finally, the density p H is

computed through normalization: 

p H (x ) = 

H(x ) ∑ 

y ∈D H(y ) 
. (A.5)

The feature coding density p c is computed for a given set of

features F . It is assumed that a feature f ∈ F can be characterized

by its location m f and its scale σ f (or 	f in the case of affine co-

variant features). A Gaussian distribution spreading over the image

domain is used to represent a region covered by a local feature. It

is also assumed that c ( f ) bits are required to represent a feature f .

Such assumptions lead to the coding map 

c(x ) = 

∑ 

f∈F 
c( f ) G (x , m f , 	 f ) , (A.6)

where G denotes an anisotropic Gaussian kernel. The final coding

density p C is the result of a normalization: 

p c (x ) = 

c(x ) ∑ 

y ∈D c(y ) 
, (A.7)

which allows us to compare both densities. 
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