toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Enric Marti; Jordi Regincos;Jaime Lopez-Krahe; Juan J.Villanueva edit  url
doi  openurl
  Title Hand line drawing interpretation as three-dimensional objects Type Journal Article
  Year 1993 Publication Signal Processing – Intelligent systems for signal and image understanding Abbreviated Journal  
  Volume 32 Issue 1-2 Pages 91-110  
  Keywords (up) Line drawing interpretation; line labelling; scene analysis; man-machine interaction; CAD input; line extraction  
  Abstract In this paper we present a technique to interpret hand line drawings as objects in a three-dimensional space. The object domain considered is based on planar surfaces with straight edges, concretely, on ansextension of Origami world to hidden lines. The line drawing represents the object under orthographic projection and it is sensed using a scanner. Our method is structured in two modules: feature extraction and feature interpretation. In the first one, image processing techniques are applied under certain tolerance margins to detect lines and junctions on the hand line drawing. Feature interpretation module is founded on line labelling techniques using a labelled junction dictionary. A labelling algorithm is here proposed. It uses relaxation techniques to reduce the number of incompatible labels with the junction dictionary so that the convergence of solutions can be accelerated. We formulate some labelling hypotheses tending to eliminate elements in two sets of labelled interpretations. That is, those which are compatible with the dictionary but do not correspond to three-dimensional objects and those which represent objects not very probable to be specified by means of a line drawing. New entities arise on the line drawing as a result of the extension of Origami world. These are defined to enunciate the assumptions of our method as well as to clarify the algorithms proposed. This technique is framed in a project aimed to implement a system to create 3D objects to improve man-machine interaction in CAD systems.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier North-Holland, Inc. Place of Publication Amsterdam, The Netherlands, The Netherlands Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-1684 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ISE; Approved no  
  Call Number IAM @ iam @ MRL1993 Serial 1611  
Permanent link to this record
 

 
Author Wenwen Fu; Zhihong An; Wendong Huang; Haoran Sun; Wenjuan Gong; Jordi Gonzalez edit  url
openurl 
  Title A Spatio-Temporal Spotting Network with Sliding Windows for Micro-Expression Detection Type Journal Article
  Year 2023 Publication Electronics Abbreviated Journal ELEC  
  Volume 12 Issue 18 Pages 3947  
  Keywords (up) micro-expression spotting; sliding window; key frame extraction  
  Abstract Micro-expressions reveal underlying emotions and are widely applied in political psychology, lie detection, law enforcement and medical care. Micro-expression spotting aims to detect the temporal locations of facial expressions from video sequences and is a crucial task in micro-expression recognition. In this study, the problem of micro-expression spotting is formulated as micro-expression classification per frame. We propose an effective spotting model with sliding windows called the spatio-temporal spotting network. The method involves a sliding window detection mechanism, combines the spatial features from the local key frames and the global temporal features and performs micro-expression spotting. The experiments are conducted on the CAS(ME)2 database and the SAMM Long Videos database, and the results demonstrate that the proposed method outperforms the state-of-the-art method by 30.58% for the CAS(ME)2 and 23.98% for the SAMM Long Videos according to overall F-scores.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ FAH2023 Serial 3864  
Permanent link to this record
 

 
Author Ivan Huerta; Ariel Amato; Xavier Roca; Jordi Gonzalez edit   pdf
doi  openurl
  Title Exploiting Multiple Cues in Motion Segmentation Based on Background Subtraction Type Journal Article
  Year 2013 Publication Neurocomputing Abbreviated Journal NEUCOM  
  Volume 100 Issue Pages 183–196  
  Keywords (up) Motion segmentation; Shadow suppression; Colour segmentation; Edge segmentation; Ghost detection; Background subtraction  
  Abstract This paper presents a novel algorithm for mobile-object segmentation from static background scenes, which is both robust and accurate under most of the common problems found in motionsegmentation. In our first contribution, a case analysis of motionsegmentation errors is presented taking into account the inaccuracies associated with different cues, namely colour, edge and intensity. Our second contribution is an hybrid architecture which copes with the main issues observed in the case analysis by fusing the knowledge from the aforementioned three cues and a temporal difference algorithm. On one hand, we enhance the colour and edge models to solve not only global and local illumination changes (i.e. shadows and highlights) but also the camouflage in intensity. In addition, local information is also exploited to solve the camouflage in chroma. On the other hand, the intensity cue is applied when colour and edge cues are not available because their values are beyond the dynamic range. Additionally, temporal difference scheme is included to segment motion where those three cues cannot be reliably computed, for example in those background regions not visible during the training period. Lastly, our approach is extended for handling ghost detection. The proposed method obtains very accurate and robust motionsegmentation results in multiple indoor and outdoor scenarios, while outperforming the most-referred state-of-art approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ HAR2013 Serial 1808  
Permanent link to this record
 

 
Author Ivan Huerta; Marco Pedersoli; Jordi Gonzalez; Alberto Sanfeliu edit  doi
openurl 
  Title Combining where and what in change detection for unsupervised foreground learning in surveillance Type Journal Article
  Year 2015 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 48 Issue 3 Pages 709-719  
  Keywords (up) Object detection; Unsupervised learning; Motion segmentation; Latent variables; Support vector machine; Multiple appearance models; Video surveillance  
  Abstract Change detection is the most important task for video surveillance analytics such as foreground and anomaly detection. Current foreground detectors learn models from annotated images since the goal is to generate a robust foreground model able to detect changes in all possible scenarios. Unfortunately, manual labelling is very expensive. Most advanced supervised learning techniques based on generic object detection datasets currently exhibit very poor performance when applied to surveillance datasets because of the unconstrained nature of such environments in terms of types and appearances of objects. In this paper, we take advantage of change detection for training multiple foreground detectors in an unsupervised manner. We use statistical learning techniques which exploit the use of latent parameters for selecting the best foreground model parameters for a given scenario. In essence, the main novelty of our proposed approach is to combine the where (motion segmentation) and what (learning procedure) in change detection in an unsupervised way for improving the specificity and generalization power of foreground detectors at the same time. We propose a framework based on latent support vector machines that, given a noisy initialization based on motion cues, learns the correct position, aspect ratio, and appearance of all moving objects in a particular scene. Specificity is achieved by learning the particular change detections of a given scenario, and generalization is guaranteed since our method can be applied to any possible scene and foreground object, as demonstrated in the experimental results outperforming the state-of-the-art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.063; 600.078 Approved no  
  Call Number Admin @ si @ HPG2015 Serial 2589  
Permanent link to this record
 

 
Author Josep M. Gonfaus; Marco Pedersoli; Jordi Gonzalez; Andrea Vedaldi; Xavier Roca edit   pdf
doi  openurl
  Title Factorized appearances for object detection Type Journal Article
  Year 2015 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 138 Issue Pages 92–101  
  Keywords (up) Object recognition; Deformable part models; Learning and sharing parts; Discovering discriminative parts  
  Abstract Deformable object models capture variations in an object’s appearance that can be represented as image deformations. Other effects such as out-of-plane rotations, three-dimensional articulations, and self-occlusions are often captured by considering mixture of deformable models, one per object aspect. A more scalable approach is representing instead the variations at the level of the object parts, applying the concept of a mixture locally. Combining a few part variations can in fact cheaply generate a large number of global appearances.

A limited version of this idea was proposed by Yang and Ramanan [1], for human pose dectection. In this paper we apply it to the task of generic object category detection and extend it in several ways. First, we propose a model for the relationship between part appearances more general than the tree of Yang and Ramanan [1], which is more suitable for generic categories. Second, we treat part locations as well as their appearance as latent variables so that training does not need part annotations but only the object bounding boxes. Third, we modify the weakly-supervised learning of Felzenszwalb et al. and Girshick et al. [2], [3] to handle a significantly more complex latent structure.
Our model is evaluated on standard object detection benchmarks and is found to improve over existing approaches, yielding state-of-the-art results for several object categories.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.063; 600.078 Approved no  
  Call Number Admin @ si @ GPG2015 Serial 2705  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: