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Abstract

Deformable object models capture variations in an object’s appearance that
can be represented as image deformations. Other effects such as out-of-
plane rotations, three-dimensional articulations, and self-occlusions are often
captured by considering mixture of deformable models, one per object aspect.
A more scalable approach is representing instead the variations at the level
of the object parts, applying the concept of a mixture locally. Combining
a few part variations can in fact cheaply generate a large number of global
appearances.

A limited version of this idea was proposed by [1] for human pose de-
tection. In this paper we apply it to the task of generic object category
detection and extend it in several ways. First, we propose a model for the re-
lationship between part appearances more general than the tree of [1] which
is more suitable for generic categories. Second, we treat part locations as
well as their appearance as latent variables so that training does not need
part annotations but only the object bounding boxes. Third, we modify the
weakly-supervised learning of [2, 3] to handle a significantly more complex
latent structure.

Our model is evaluated on standard object detection benchmarks and is
found to improve over existing approaches, yielding state-of-the-art results
for several object categories.
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1. Introduction

Pictorial Structures (PSs) [4, 5] and their modern variants such as the
Deformable Part Models (DPMs) [2] are probably the most popular models
for object category detection. A PS is a collection of independent object parts
whose spatial configuration is constrained by a system of elastic connections
(springs). A DPM is a particular example of a PS that is learned by a
discriminative method (latent SVM) and that uses linear classifiers on top of
HOG features to describe the part appearance.

By design, DPMs model variations of the object that can be expressed as
an independent motion of the object parts, which excludes, in particular, all
the effects that cannot be expressed as an image deformations. An example
are appearance variations due to the self occlusion of a three dimensional
object rotating out-of-plane. Another example are three dimensional articu-
lations or deformations: the appearance of a horse tail or of a scarf can change
quite dramatically with motion. Since the linear HOG filters used in DPMs
represent, by their very nature, a unimodal distribution of appearances, none
of these variations can be modelled effectively by a DPM.

A simple way of incorporating multi-modal statistics in a DPM is to give
up the linearity of the filters. For a discriminatively trained model, this
means using a kernel other than a linear one, for example a radial basis
function (RBF) kernel [6, 7]. Unfortunately, non-linear kernels have a major
impact on the learning and testing complexity of the model [6]. In fact,
if the bottleneck of a standard DPM is searching object parts at all image
locations and scales [8], with a non-linear kernel this is further exacerbated
by the need of comparing each candidate part appearance to a large number
of support vectors (typically in the order of thousands [6]). Recent techniques
for the efficient “linearization” of non-linear kernels [9, 7] do not help much
here because they are limited to additive kernels, which, unlike the RBF
ones, cannot be used to express multi-modal functions. Approximating RBF
kernels very efficiently is still an open issue [10].

The alternative and more common approach for modelling multi-modal
statistics with a DPM is to use a mixture of multiple DPMs [2, 11, 12],
one for each object aspect (e.g., the front, three-quarter, and side views of
a car, as in Fig. 1). The multiple DPMs are “glued” together by a latent
variable that selects which component to use for each given candidate object
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(i) AND/OR graph representation of our model.

(ii) Part
deformation

(iii) Appearance
compatibility

Figure 1: Structure of the object model. (i) Our model can be interpreted as a
OR-AND-OR tree, where aspect, parts and local appearance of each part are represented.
(ii) As in DPM each part it is constrained to a center, in a star model. (iii) In contrast
to [1] our appearance compatibility is learnt with a grid-like structure to adapt to any
class.

instance. Compared to using non-linear kernels, the increase in complexity
is bounded (linear in the number of components), and the latent variable
explicitly captures which appearance variant is active, which may have a well
defined semantic (e.g., the object viewpoint).

Mixtures of DPMs are usually learned jointly to calibrate their scores and
to determine which component to use for each training object instance [2,
11]. Other than that, the components are independent computationally and
statistically. The latter issue is particularly severe as it limits the number
of components that can be added to the model before overfitting starts to
kick in. In practice, mixtures of DPMs can only model a handful of different
object aspects. A more effective modelling scheme must exploit the fact that
the various object aspects are by and large statistically dependent.

In this paper we extend the mixture-of-parts proposed in [1] for pose
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estimation to general object class detection. In essence, we investigate the
simplest extension to DPMs that allows exploiting the statistical dependen-
cies between different object aspects. In particular, we apply the notion of a
mixture of object appearances at the level of the object parts, rather than to
the object as a whole. In object detection, the class structure for any object
and the part locations are generally unknown, and only bounding boxes are
available. Therefore, the fully supervised method of [1] can not be used. In
contrast, our model considers the object parts and their appearance as la-
tent variables that should be jointly estimated during training. In order to
properly constraint the latent variables, we adapt the weakly-supervised la-
tent SVM algorithm [2, 3], with a hierarchical regularization as explained in
Sect.3. In this way, local part appearances can be learned in an unsupervised
way.

To illustrate our model, consider a standard mixture of DPMs [2]. Graph-
ically, this can be represented by the AND-OR tree of Fig. 1(i) . The root
node represents an OR node, and entails selecting one of a number of possible
DPM models (corresponding to the three-quarter, side, and front views of
the car). Each of these nodes is in turn connected to a small number of parts
by an AND node, meaning that all those parts should be detected for the
corresponding DPM. Our extension associates to each part a pool of differ-
ent appearances to choose from, connected by an OR node. These multiple
part appearances can represent local variations such as different styles of the
wheel of a car, different shapes of the tail of a horse, or different rotations of
the head of a person.

The key insight is that the model can now represent a much broader range
of object variations combinatorial rather than linear in the number of model

components, with a very modest increase in the number of model parameters
(e.g., just twice as many if two appearance models per part are considered).
As we will see in Sect. 5, the impact on the inference and learning costs is
also very modest.

Nevertheless, selecting parts independently from each other can yield un-
reasonable configurations (e.g., two different wheel styles for the same car).
To improve the model specificity and ultimately its precision, we consider
on top of the AND-OR graph a mechanism to constrain the part activations
to be pairwise compatible. (see Fig. 1(iii)). While in [1] the structure of the
compatibility constraints have the same structure used for deformations, i.e.
a tree, since our goal is to generic object categories whose structure may
be unknown a-priori, local appearance compatibility is enforced on a planar
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graph instead, where each part is connected to its neighbourhoods. This
structure is a loopy conditional random field (CRF) and it can be optimized
efficiently with combinatorial techniques [29]. In this way, the actual struc-
ture of the object is learned during training by associating a weight to each
pairwise term.

1.1. Related work

This section briefly summarises some of the main development in the vast
literature on object detection, highlighting the methods that are most related
to our contribution, see [13] for an extensive survey on object detection.

The simplest approach to improve the quality of an object detection sys-
tem such as DPM is to improve the underlying image features. For example,
[14] adds LBP features on top of the standard HOG representation, [15]
incorporates color and [16] integrates local bag-of-features models and an
object mask. However, a conscious study on the effect of adding more data
and changing the structure model based only on HOG [17], reflects the ne-
cessity that more complex structures can better represent the objects and
therefore increase the recognition performance. A counterexample is found
in [18], which allows sharing of parts between different components, an ap-
proach orthogonal to ours. Unfortunately their results are well below the
state-of-the-art in some international benchmarks. A possible reason is that,
in our experience, sharing the same linear part filters between different DPMs
yields serious calibration issues.

The concept of mixtures-of-parts is first introduced in [1]. Here the au-
thors propose a tree-structured model for human pose estimation using mul-
tiples interchangeable mixtures for each part. Unfortunately, their model
is valid only for articulated objects, where the structure and the degree-of-
freedom of the parts is known. Furthermore, part locations are known which
make the problem easier and a standard learning procedure, like SVMs can be
used. Recently, other methods have also explored the case of fully-supervised
training, where the part location is known [19, 20]. These seem to trade a
higher cost of annotations for a better detection performance.

Other works have proposed to use multiple part appearances in contexts
other than DPMs, but they usually require a significant amount of supervi-
sion. [21] use AND-OR graphs to parse articulated objects, but the position
of the parts (limbs) is known beforehand. Similarly, in [22], the authors make
use of production scores to capture the co-occurrence costs. Poselets [23]
learn a large mixture of human parts, each with his own appearance, and
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associate them to “fragments of pose”. These methods have some interesting
properties but require a very large quantity of annotated data.

In [24], the authors introduced multiple instance learning for object mod-
elling by learning automatically the object parts and their locations from a set
of object bounding boxes. The same mechanism, but implemented by means
of latent variables, has been used extensively in the learning of DPMs [2],
including determining object bounding boxes, parts, and aspects, and is fur-
ther extended in this work to capture multiple part appearances. Finally,
the layout of our baseline model is a simplified version of [11] where we use
a single layer of parts in a regular grid, still obtaining similar performance.

The grammar framework described in [3] does not require ground-truth
annotations on the position of the parts. However, that grammar needs to
be carefully hand-tuned to represent the object of interest (humans). Since
grammars cannot yet be learned automatically, we prefer to choose a model
that can be adapted to any type of class, so we select a general structure
based on simple pairwise connections between the parts, forming a CRF over
parts appearance.

CRFs and latent variables have been used in the modelling of object
categories in [25]. There the authors model an object as a set of patches
and activate them by computing a minimum-spanning tree. However, the
representation is too weak to obtain satisfactory performance on challenging
international benchmarks such as the PASCAL VOC.

While in our work we use multiple appearances to render complex object
configurations, rank constraints during learning [26] or a sparse representa-
tion on the learned model [27] are used to represent the object parts as a
linear combination of a reduced set of basis. These methods contribute to
make the inference faster having to evaluate a reduced set of parts, but does
not help on improving detection, as instead our model does. A similar idea is
used in [28] to speed up multi-class object detection, by using a coarse-to-fine
taxonomy of parts among classes.

2. Object Model

This section introduces our deformable object model combining: (i) a
small number of global components that capture radically different object
viewpoints (e.g., the front and side of a car), (ii) a number of movable parts
for each component to model deformations and (iii) a number of appearance
models for each part, to represent multiple variations of their appearance.
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Next, we give a formal definition of the model, and we specify the score
obtained by matching the model to an image for a given configuration of the
parts.

AND-OR model. Let x be an image. The score Aj(y;x,w) of matching a
single part given its location/scale at rest y = (yx, yy, ys) is obtained by
trading off the cost of a part displacements z = (zx, zy, zs) with the quality
of the resulting appearance match:

A(y;x,w) = max
z

〈

ψA(w), φA(x,y + z)
〉

+
〈

ψD(w), φD(z)
〉

. (1)

Here φA(x,y+ z) is the HOG descriptor extracted from image x at location
y+z and φD(z) is a descriptor of the deformation (for example defining φD(z)
as the vector of the squared displacements implements a quadratic spring).
The vector w collects the parameters for the part and the operators ψA and
ψD simply extract the blocks of parameters corresponding respectively to the
appearance and the deformation.

Next, we extend w to include multiple part parameters (appearance and
deformation) and introduce corresponding operators ψA

k (w) to extract them.
We can therefore associate each ψA

k (w) to a learned appearance for a certain
part as represented in Fig. 1. The appearance with the highest score is used
to match the part to the image:

P (y;x,w) = max
k
A(y;x, ψA

k (w)). (2)

This has the function of a OR node as shown in Fig. 1. Summing over a
number of parts j ∈ P results in the score for the aspect:

C(y;x,w) =
∑

j

Pj(y + hj;x, ψ
P
j (w)). (3)

This is equivalent to an AND node in Fig. 1. ψP
j contains therefore the model

parameters of the multiple appearances and deformations of a part j, while
hj = (hx, hx, hs) is the part anchor, i.e. the location of the part with respect
to the object centre. Finally, w is extended one last time to include multiple
aspects and the score of the whole model is given by of the best matching
aspect:

O(y;x,w) = max
i
Ci(y;x, ψ

C
i (w)). (4)

7



Again, this correspond to a logical OR over the object aspects modelled by
ψC
i as represented at the top of the AND-OR tree in Fig. 1. To summarise,

the score of the model is given by

O(y;x,w) = max
i

∑

j

max
k
A(y + hi,j ;x, ψi,j,k(w)) (5)

where for compactness we defined ψi,j,k(w) = ψC
i (ψ

P
j (ψ

A
k (w))) and we de-

noted by hi,j the anchor of the part j of the aspect i.

Loopy CRF model. In order to limit the number of possible part combinations
to the ones that are meaningful, a set of additional constraints in the form
of a CRF with loops is introduced. These constraints encourage neighbour
parts to be assigned a compatible appearance, as automatically estimated
from the frequency of co-occurrences on the training set. This set of part
relations is modelled by a graph G ⊂ P × P with an edge per constraint. For
each constraint, consider a matrix vmn where vk1,k2 is the cost of activating
the appearance k1 of the first part together with the the appearance k2 of
the second part. Consider also the scoring function

B(k1, k2;v) =
∑

m

∑

n

I(k1 = m)I(k2 = n)vm,n, (6)

where I is the indicator function of an event. Instead of maximising indepen-
dently over each part appearance as in (2), now the model optimises jointly
over all parts, while accounting for the pairwise constraints:

CCRF (y;x,w) = max
k

∑

j∈P

A(y + hj;x, ψj,kj(w))

+
∑

(j,l)∈G

B(kj, kl;ψ
B
j,l(w)) (7)

where k = [k0, k1, ..., kn] is a vector appearance labels, one for each part,
and ψj,k(w) = ψP

j (ψ
A
k (w)). Finally ψB

j,l are the parameters of the pairwise
constraints between the parts (j, l), represented with a dashed line in Fig. 1.

Rewriting the final score for the formulation with pairwise appearance
constraints gives:

OCRF (y;x,w) = max
i,k

∑

j

A(y + hi,j ,x, ψi,j,kj(w))

+
∑

(j,l)∈G

B(kj, kl;ψ
B
i,j,l(w)) (8)
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Inferring the model at location y amounts to maximising (8). To do so
efficiently, G is restricted to have a planar structure, where each part is
connected with its horizontal and vertical neighbours (as in Fig. 1 (iii)).
Dynamic programming is used to estimate the optimal displacement of each
part first, and sequential reweighted trees [29] is used to solve the loopy CRF
model and jointly estimate the optimal appearance of the parts. Considering
that the number of parts is generally quite small, this does not compromise
detection speed compared to a standard DPM.

3. Weakly-Supervised Learning

Learning uses weak supervision and, similarly to [2], requires only bound-
ing boxes around instances of the object category of interest. The aspect,
part locations, and part appearance components are not provided and are
instead estimated automatically during learning as latent variables.

In detail, given a set of input images X = (x0,x1, ..,xl), a set of object
locations Y = (y0,y1, ..,yp), and the locations of the negative samples N =
(n0,n1, ..,nn) (i.e., locations that do not overlap with the ground truth object
bounding boxes), the goal is to optimise the empirical risk

f(w) =
1

2
R(w) + C

p
∑

i=0

L

(

max
s∈Si

O(s;xl(i),w)

)

+ C

n
∑

i=0

L
(

−O(ni;xl(i),w)
)

, (9)

where L(z) = max{0, 1−z} is the hinge loss, xl(i) is the image corresponding
to the object location yi, and s denotes a small correction applied to the
ground truth location estimated to better fit the model to the training data,
similar to [2]. In particular, the adjustment is encoded by the (latent) variable
s, which is constrained to be in the vicinity of the ground truth locations,
i.e.

Si = {s ∈ xl(i) : ovr(s,yi) > T}, (10)

where ovr(s,y) = area(Bs∩By)

area(Bs∪By)
is the overlap score between the bounding boxes

at location s and y respectively, and T is a threshold. Note that besides s,
the other latent variables are not shown in Eq.(9), but are still maximized
inside O, as shown in the derivation of O in section 2.
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3.1. Optimisation

Since the objective (9) is equivalent to a standard linear SVM (except
for the treatment of the latent variables, as discussed below), optimisation
uses the fast stochastic gradient descent technique of [30]. However, since
the number of negative examples is extremely large (there is one negative for
each image location that does not contain the object), the model is learned
in stages, by collecting more and more hard negative examples based on the
current version of the model. This procedure, known as constraint genera-
tion, cutting plane, or mining of hard negatives [2], can be shown to converge
to the optimum of the objective function (9) in polynomial time.

The scoring function O(y;x,w) of the model implicitly maximises over a
number of parameters (aspect, part locations, part appearance selections) en-
ergies that are, ultimately, linear in w. Since O(y;x,w) is the max of convex
functions, is itself convex in w, and so is the composition with the hinge loss
L(−O(ni;xl(i);w)) for the negative examples. Unfortunately, for the positive
examples the loss turns the sign the other way around and the composition
is not convex. To address this issue, we follow the standard approach of
converting the parameters that O(y;x,w) marginalises over (aspect, part lo-
cations, part appearances) into latent variables and use the Concave-Convex
Procedure (CCP) [31, 2, 11] to find a model w which is at least locally op-
timal. The CCP alternates estimating the latent parameters of the positive
object instances and the model w; in particular, the latent estimation step
can be seen as hallucinating/estimating the model parameters that would be
provided by an annotator in case of strong supervision.

3.2. Regularisation

In our model the latent variables are applied at two different levels. For
the parts location, the latent variable is applied at feature level. That is,
the model displaces each part to select the features that maximize its score.
Instead, for aspect and part appearance, the latent variable is applied at
model level, because the model selects which component for aspect and parts
appearance better describe the features (i.e. maximises the score).

While latent variables at the feature level can be regularized with stan-
dard SVM R(w) = ‖w‖2 regularization, for latent variables at model level
the standard approach would fail. This is because when a latent variable at
model level selects the best component, the others would be set to zero to
force them to not contribute to the scoring. This procedure allows the model
to represent OR-like nodes, but it is intrinsically unstable. Imagine that a
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component, during an iteration of latent variables estimation get assigned
more samples than another. This would produce a new model, where the
corresponding component has gained importance (i.e. its norm is higher).
Thus, in the next iteration of latent variables estimation the component will
probably get assigned even more samples. This would tend to produce a
sparse representation with few strong components and the rest set to zeros
and thus ineffective.

We can counterbalance this instability by using as regularizer the maxi-
mum of the squared norm of the parameters of each component rather than
their sum. In [32] this procedure was used to better balance the final score
among the different aspects of a model. Here, as the object parts are totally
free to choose any appearance, this procedure becomes fundamental. We
found that when using latent variables, balancing the various model compo-
nents (aspects, part appearances) is very important. If the latent, using the
standard SVM regulariser R(w) = ‖w‖2 tends in fact to kill entire compo-
nents by pushing their parameters to zero, ultimately lowering the perfor-
mance of the model. [32] alleviate this problem by using as regulariser the
maximum of the squared norm of the parameters of each component rather
than their sum. In this way, there is no advantage in lowering the weights of
any of the components with respect to any other. Since our model includes
components at two levels (object and parts), we found that the appropriate
extension of this idea involves maximising over components at both levels,
as follows:

R(w) = max
i

∑

j

max
k

〈ψi,j,k(w), ψi,j,k(w)〉 . (11)

Due to the recursive definition of ψi,j,k(w), (11) must be computed recur-
sively, for example by using dynamic programming. Other than that, incor-
porating it in the SGD solver is trivial as it suffices to compute a sub-gradient
with respect to w.

3.3. Initialization

The CCP procedure is a local optimization method therefore the initial-
ization is very important in order to obtain a good solution. This amounts to
finding a good initial value for the latent variables. As in the proposed model
the latent variables are extended also to part appearance, their initialization
is fundamental for good results. We propose a two steps approach to produce
a good initialization for the parts appearance.
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The location of the positive instances (s in (9)) is chosen to maximise the
overlap between the ground truth bounding box and the one associated to
the model. Initially deformations are set to be null. As in [32], the model
has a flag indicating whether the object is facing left or right; this is an
additional latent variable which is initialized by pre-clustering the training
examples (denoted as FLIP).

We explore two initialization procedures for learning the local appear-
ances. In the first, we learn all latent variables at the same time, by ran-
domly assigning each local appearance to one of the labels. With this naive
approach, we found that the model can easily get stuck in a local minima.

A better strategy is to using a two step sequential procedure (denoted
as SEQ). A standard (one appearance) DPM model is first learned. Then,
the learned model is applied again to the training images so that a precise
and aligned localization of the parts can be obtained. For each part a k-
means clustering on the feature space is effectuated, where k is the number of
appearances that we want to model. Each cluster is then used as initialization
for the appearance of the multi-appearance model.

The appearance compatibility parameters are initialized to zero so that
initially, any appearance can be chosen. After this, their value is estimated
by the SVM optimization so that compatible parts will obtain a positive
weight while incompatible parts a negative one.

4. Implementation Details

We implement our model using HOG features for the object appearance
and quadratic cost for the deformation features. Specifically, we define the
features of an object part as:

φI(x,y + z) = H(x,y + z) (12)

where H is a function that given the image x extracts a vector of HOG
features [2] from the given location y + z. The deformation features are
defined as:

φD(z) = [z2x, z
2
y , zx, zy] (13)

to account for the displacement magnitude and direction. Due to these
choices, the maximisation in (1) can be done efficiently by using the distance
transform [4]. Local Appearances are selected in the same maximisation,
after applying its own displacement penalties.
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For detection, the score O(y;x,w) is evaluated at a discrete set of loca-
tions y which match to the layout of the underlying HOG features. To speed-
up the evaluation of the appearance compatibility we produce an initial set of
detection hypotheses without considering the pair-wise compatibility scores
(5), rank them, and compute the full but more expensive score (8) only at
the top 1000 candidates. This reduces the computational cost of the method
without affecting the detection accuracy.

To get a final list of candidate detections, non-maxima suppression is run
over the candidate list of bounding boxes of the different model aspects sorted
by decreased confidence score. This procedure is greedy: after selection a new
detection, any other detection that overlaps with it by more than a threshold
is removed from the candidate pool.

The time required to detect an object is dominated by the number of part
filters that need to be evaluated. For example, a model with two aspects,
left-right flipping, and two appearances per part, requires 8×Nparts filtering
operations. On a single core Xeon 2.4GHz a model withNparts = 9, evaluating
the cost on a PASCAL VOC image takes an average of ten seconds.

5. Experiments

We evaluate our approach on two standard datasets: INRIA Person
Dataset [33] and Pascal VOC 2007 [34]. The variety of the classes helps
to identify the classes where more benefit is obtained by the use of multiple
local appearances. For evaluation, we use the comparison framework of [35]
for INRIA, and the average precision (AP) with the standard Pascal VOC
2007 criterion.

5.1. Initialization

First, we evaluate the two initializations of the appearance explained in
section 3 for the horse and motorbike classes. We begin with a model with
2 Components. Although the simplicity of the random initialization, the
method is able to find two different appereances per part. As shown in Fig.
2 (i), a model of horse with 2 local appearances (named 2app) with this
random initialization gain 5 points over the 1 appearance model (1app).

Using the same initialization with the left-right models, the method gain
is not as high as expected, and only improves in 1 point with respect to
the flipped version. This is because the left-right orientation and the local
appearances compete each other to estimate the same object appearance.
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Figure 2: Average precision for the horse and motorbike classes. See explanation in the
text.

An interesting example of this is shown in Fig. 3 (i), where it is illustrated
the object model of a horse with random initialization. Local appearances
and left-right model tries to represent the same appearance, finally resulting
in impossible model configurations (i.e. horse with two heads in the top-
right model). Instead, with the SEQ initialization, which sequentially learn
the left-right prediction and then two latent estimations of local appearances,
obtains a much nicer model. In this way, as the model orientation has already
been learned, the local appearances can now learn different views of the object
(namely, a quiet or a running horse).

This is shown in Fig. 3 (ii). We add the two appearances to the model,
once the flip variables has been estimated, which represents the current state
of the art for deformable HOG based models. Again, the multiple local
appearances increase the performance, pushing the AP up to 60.1% which is
already 4 points over the state of the art. Finally, learning the compatibility
of the local appearances further increase the AP of more than 1 point reaching
an AP of 61.7%. This is mainly due to less false detections are found, hence
higher precision is achieved.

5.2. Inria Pedestrian Dataset

We next evaluate our approach on the INRIA Person Dataset [33]. For
evaluation, we use the framework of [35].
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(i)

(ii)

Figure 3: Effects of different multiple appearance initializations on the horse class. Left
and right models represent the two appearances that each part can represent. In (i), all
latent variables are estimated from the beginning. In (ii), local appearances are learnt
sequentially, after an initial model has been learnt. Note that in (i) the top right horse
has modelled two heads in the same model, and that in (ii) the horse is better modelled
by its movements (quiet or in movement).

1 2 3
Global Components 86.8% 86.7% 86.0%
Local Appearances 86.8% 87.8% 88.0%

Table 1: AP on Pedestrian INRIA Database. Comparison of the usage of multiple
local or global appearances. Notice how overfitting kicks in when increasing the multiple
components used, while this does not occur when adding more local appearances.

In Table 1, we evaluate different configurations of our model. The baseline
is shown in column one and is a model with only one appearance per part
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72% VJ

46% HOG

20% LatSvm−V2

20% ConvNet

19% CrossTalk

17% ACF

15% RandForest

11% SpatialPooling

17% Our Model

16% WordChannels

Figure 4: Evaluation on INRIA. Comparison with other state of the art methods on
the Inria Person Dataset. Our method using only HOG features is on par with most of
the other methods that use color and other more sophisticated features. For a complete
explanation of the evaluation criteria and the methods see [35].

and one global component with left-right facing (like a traditional DPM).
In the first row we show the effect of increasing the number components.
It produces a slight decrement on AP, probably due to the statistical inde-
pendence of each component. In practice increasing the global components
reduces the number of samples available for each component and therefore
the generalization capability of the learned model. In contrast, using more
local appearances yields better accuracy, and the model reaches an AP of
88% when using a model with 3 appearances for each part.

In Fig. 4 we compare the model with 3 appearances with the current state
of the art in pedestrian detection. As pedestrians assume different poses,
local deformations are quite important. For this reason the DPM model (in
the table is referred as LatSvm-V2) performs relatively well, even if other
models use multiple and more expensive features like color or convolutional
features. However, pedestrians can also wear different clothes or assume very
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cmp ap crf aero bike bird boat bott bus car cat chair cow tab dog hors moto pers plant sheep sofa train tv mean
2 2 Y 35.5 59.6 9.6 11.3 30.0 54.3 55.8 13.8 20.5 30.2 23.0 10.3 58.4 45.6 36.2 12.3 26.0 18.7 42.2 39.2 31.6
2 2 N 32.8 60.5 4.9 11.9 29.6 52.9 53.9 10.5 19.9 30.4 23.3 10.4 58.4 44.8 35.9 11.7 25.8 18.6 43.4 39.9 30.9
4 1 - 32.1 57.6 4.5 11.2 26.8 56.0 49.4 11.0 18.0 23.3 13.1 3.7 55.2 41.2 34.9 12.3 24.9 12.7 42.1 37.5 28.4

Table 2: Different configurations on PASCAL VOC 2007. First row reports AP values
with our standard method with 2 components and 2 appearances per part. Second row
report results for a model with exactly the same configuration but without using the
appearance constraints introduced in section 2. The last row reports results for a model
with 4 different components but a single appearance.

specific positions that cannot be explained with simple parts displacement.
In this conditions the proposed model is better indicated. This is reflected on
the evaluation, where our method combining deformation and a multimodal
representation of the object parts clearly outperform DPM and is on par with
most of the state of the art approaches which are specifically optimized for
the task of pedestrian detection.

5.3. PASCAL VOC 2007

Our method is general enough to be used to learn any object class, not
only pedestrians. In this sense we perform several experiments on the chal-
lenging VOC 2007 [34], where 20 different classes should be learned using the
same settings.

We evaluate for each class the importance of the two main contributions
of this work: (i) we compare local parts versus global components and (ii)
we evaluate the effect of the pairwise constraints on the parts appearance.
As reference we consider the AP of our model trained using 2 components
and 2 local appearances as reported in the first row of table 2.

The second row of the table reports the AP for a new model trained with
exactly the same configuration of our reference model but without using the
pairwise appearance constraints. In average the model without appearance
constraints is inferior to the complete one. This confirms our hypothesis
that learning the pairwise compatibility between parts helps to improve the
detection accuracy, see Fig. 5. Although the average difference between the
two models is relatively small (0.7) for certain classes enforcing compatibility
among parts can provide a neat improvement of more than 2 points.

In the third row of the table we train a new model with 4 global compo-
nents. Doing so, the number of parameter to learn is similar to the model
with 2 components and 2 appearances. However, in the 4 components model,
each component is totally separate from the other. This can be considered
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Figure 5: AP for different configurations of our model.

an advantage because the model avoids to mix-up appearances and it will
probably generates fewer false positives. Still, the model cannot share parts
which reduces its capability to generalize. In this experiment the advantage
of using multiple local parts is evident. The 4 components model obtains a
lower AP in almost every class and it has a mAP more than 3 points lower
than the model with multiple appearances.

In Fig. 6 we visualize the occurrence of each possible configuration of
parts for the class car. As the model is composed by 9 parts and each has
2 local appearances, a total of 29 different configurations can be expressed.
This is much higher than the 4 representations of a traditional DPM with
independent components. From the histogram we can see that there are few
configurations that are the most used. However, most of the configurations
are used at least one time. This shows that the model is really using its
capability to combine different part appearances to represent the different
instances of a class.

In table 3 we report the AP of the DPM model as reference and the AP
of our deformable model with one, two and three appearances. Our baseline
is around 2 points below the DPM score form [32]. This is mainly due to
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Figure 6: Appearance distribution. Each of the part configuration can be represented
by 29 possible combinations. Here we show the number of times each configuration has
been used to represent a car. Without the appearance factorization only two configurations
can be selected.

aero bike bird boat bott bus car cat chair cow tab dog hors moto pers plant sheep sofa train tv mean
DPM[32] 29.6 57.3 10.1 17.1 25.2 47.8 55.0 18.4 21.6 24.7 23.3 11.2 57.6 46.5 42.1 12.2 18.6 31.9 44.5 40.9 31.8
1 App 34.3 57.5 9.2 13.2 26.4 50.7 52.3 11.2 19.1 27.2 21.5 5.2 58.1 44.6 34 11.3 22.6 16.6 37.0 40.5 29.6
2 App 35.5 59.6 9.6 11.3 30.0 54.3 55.8 13.8 20.5 30.2 23.0 10.3 58.4 45.6 36.2 12.3 26.0 18.7 42.2 39.2 31.6
3 App 37.6 61.9 9.5 12.8 28.9 53.8 55.0 13.8 20.5 31.0 23.0 10.6 60.4 46.0 36.0 13.0 27.1 19.1 44.6 39.5 32.2

Table 3: PASCAL VOC 2007 Detection results. The first row reports results from [32]
without bounding box estimation. Our model results are reported for 1 2 and 3 local
appearances.

our implementation choice. A strategic placement of the parts can highly
enhance the performance of the detector. However, as we use connections
among nearby parts, we prefer to use a uniform distribution of the parts.
Instead, in DPM they use a greedy procedure to find the best placement for
the parts. Furthermore, the DPM is composed of a low-resolution and rigid
model and on top of it several parts.

In our simplified model, we do not use the low resolution representation
because we are mainly interested in the role of the parts and their interaction.
Assuming that, we consider ours a strong baseline. Our baseline obtains a
mAP of 29.6. The performance of the same model with 2 appearances per
each part and pairwise compatibility constraints scores a mAP of 31.6 such
that the gap with DPM is already almost cancelled.

Moving to 3 appearances per part leads to an additional improvement
of 0.6 points as reported in the last row of the table. In Figs. 7 and 8,
we show the different appearances learned for the parts of cars and horses,
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Figure 7: Top scoring detection for each appearance of each part of a car. Note that the
two appearances are interchangeable.

Figure 8: Top scoring detection for each appearance of each part the class horse. Note the
differences that we capture in the appearance of the head and the legs, or in the rider.

respectively, together with the top 5 best scoring detections for each part.
We can see how, despite describing the same object, each appearance learns
a quite different model.
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5.4. Discussion

In this paper we have shown how to increase the representational capabil-
ity of DPM by adding multiple local part appearances that can be combined
in a exponential number of possible representations with a limited computa-
tional cost. However, to obtain this model to work properly some important
parts of the DPM algorithm had to be modified and improved.

First of all, as explained in Sect. (3.2), when dealing with multiple com-
peting representations, especially at multiple levels, (as aspects and parts in
our case), it is fundamental to apply a regularization that tends to keep the
corresponding models balanced, so that one does not “steal” all samples. We
notice that this problem becomes more and more important while increasing
the number of appearances. In our setting we limit our experiments to 3
part appearances mostly for resources reasons (i.e. memory). However, we
believe that further increasing the number of appearances can give a limited
improvement also due to the competing representations problem.

Another very important factor for good results is initialization. In partic-
ular, clustering aligned parts can make a big difference in the final results (see
Fig. 2(i) in Sect.5). Applying the clustering to fixed part locations (before
alignment) would produce splits that represent the different displacement
that the part can assume in different object instances. Therefore the result-
ing multi-appearance model of each part would represent almost the same
appearance multiple times (would learnt displaced parts) which lead to a
poor initialization, and the model would get also stuck. Instead, with our
aligned initialization we assure that the split in the clustering would model
different appearances of the same part. Even though the proposed initializa-
tion performs already much better than a naive one, we still believe that the
initialization of the parts is one of the key points to further improve results.
Specifically, for classes where the body deformation are relevant, like cats
and dogs, a better initialization based on the real part location can produce
much better results as shown in [19].

Finally, it is interesting to notice that, as the model capacity increases,
for example in our case allowing combination of parts, the space of search of
the negative examples also increases, which directly translates into a slower
convergence. For example a training of a deformable model with 1 appear-
ance needs an average of 4 − 5 iterations of negatives to converge in the
first iteration. If we move to 2 local appearances the number of iterations
grows to 5 − 15 while for 3 appearances it is necessary from 10 to 20 itera-
tions. Despite the training time increases, during testing time, the method
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grows linearly with the number of appearances. In this sense methods like
[26, 27, 36, 37, 38] can be used to reduce the computational cost for detection.

6. Conclusions

We have presented a new extension of the deformable parts model that
can be used to learn multiple local appearances at a reasonable computational
cost.

Compared to a traditional mixture of DPMs, our model (i) can express a
very large set of different object appearances with a very small increase in the
number of parameters, (ii) can learn the same amount of variation from far
less training data by better exploiting the statistical dependencies between
different object appearances, and (iii) is still very discriminative because the
CRF constraints can reject unlikely part configurations.

Compared with multiple independent models, our approach can approxi-
mate an exponentially rich combination of appearances maintaining the same
model representation. In addition, to limit our representation to only the
feasible configuration of local parts, we introduce pairwise potential between
appearances. We are also investigating the possibility to introduce the con-
cept of occluded parts to the model as another local appearance, which can
help on learning clearer parts.
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