toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Eduardo Aguilar; Marc Bolaños; Petia Radeva edit  url
openurl 
  Title Regularized uncertainty-based multi-task learning model for food analysis Type Journal Article
  Year 2019 Publication Journal of Visual Communication and Image Representation Abbreviated Journal JVCIR  
  Volume 60 Issue Pages 360-370  
  Keywords (down) Multi-task models; Uncertainty modeling; Convolutional neural networks; Food image analysis; Food recognition; Food group recognition; Ingredients recognition; Cuisine recognition  
  Abstract Food plays an important role in several aspects of our daily life. Several computer vision approaches have been proposed for tackling food analysis problems, but very little effort has been done in developing methodologies that could take profit of the existent correlation between tasks. In this paper, we propose a new multi-task model that is able to simultaneously predict different food-related tasks, e.g. dish, cuisine and food categories. Here, we extend the homoscedastic uncertainty modeling to allow single-label and multi-label classification and propose a regularization term, which jointly weighs the tasks as well as their correlations. Furthermore, we propose a new Multi-Attribute Food dataset and a new metric, Multi-Task Accuracy. We prove that using both our uncertainty-based loss and the class regularization term, we are able to improve the coherence of outputs between different tasks. Moreover, we outperform the use of task-specific models on classical measures like accuracy or .  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ ABR2019 Serial 3298  
Permanent link to this record
 

 
Author Antonio Hernandez; Nadezhda Zlateva; Alexander Marinov; Miguel Reyes; Petia Radeva; Dimo Dimov; Sergio Escalera edit   pdf
doi  openurl
  Title Human Limb Segmentation in Depth Maps based on Spatio-Temporal Graph Cuts Optimization Type Journal Article
  Year 2012 Publication Journal of Ambient Intelligence and Smart Environments Abbreviated Journal JAISE  
  Volume 4 Issue 6 Pages 535-546  
  Keywords (down) Multi-modal vision processing; Random Forest; Graph-cuts; multi-label segmentation; human body segmentation  
  Abstract We present a framework for object segmentation using depth maps based on Random Forest and Graph-cuts theory, and apply it to the segmentation of human limbs. First, from a set of random depth features, Random Forest is used to infer a set of label probabilities for each data sample. This vector of probabilities is used as unary term in α−β swap Graph-cuts algorithm. Moreover, depth values of spatio-temporal neighboring data points are used as boundary potentials. Results on a new multi-label human depth data set show high performance in terms of segmentation overlapping of the novel methodology compared to classical approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1876-1364 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number Admin @ si @ HZM2012a Serial 2006  
Permanent link to this record
 

 
Author Albert Clapes; Miguel Reyes; Sergio Escalera edit   pdf
url  doi
openurl 
  Title Multi-modal User Identification and Object Recognition Surveillance System Type Journal Article
  Year 2013 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 34 Issue 7 Pages 799-808  
  Keywords (down) Multi-modal RGB-Depth data analysis; User identification; Object recognition; Intelligent surveillance; Visual features; Statistical learning  
  Abstract We propose an automatic surveillance system for user identification and object recognition based on multi-modal RGB-Depth data analysis. We model a RGBD environment learning a pixel-based background Gaussian distribution. Then, user and object candidate regions are detected and recognized using robust statistical approaches. The system robustly recognizes users and updates the system in an online way, identifying and detecting new actors in the scene. Moreover, segmented objects are described, matched, recognized, and updated online using view-point 3D descriptions, being robust to partial occlusions and local 3D viewpoint rotations. Finally, the system saves the historic of user–object assignments, being specially useful for surveillance scenarios. The system has been evaluated on a novel data set containing different indoor/outdoor scenarios, objects, and users, showing accurate recognition and better performance than standard state-of-the-art approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; 600.046; 605.203;MILAB Approved no  
  Call Number Admin @ si @ CRE2013 Serial 2248  
Permanent link to this record
 

 
Author Miguel Reyes; Albert Clapes; Jose Ramirez; Juan R Revilla; Sergio Escalera edit   pdf
url  doi
openurl 
  Title Automatic Digital Biometry Analysis based on Depth Maps Type Journal Article
  Year 2013 Publication Computers in Industry Abbreviated Journal COMPUTIND  
  Volume 64 Issue 9 Pages 1316-1325  
  Keywords (down) Multi-modal data fusion; Depth maps; Posture analysis; Anthropometric data; Musculo-skeletal disorders; Gesture analysis  
  Abstract World Health Organization estimates that 80% of the world population is affected by back-related disorders during his life. Current practices to analyze musculo-skeletal disorders (MSDs) are expensive, subjective, and invasive. In this work, we propose a tool for static body posture analysis and dynamic range of movement estimation of the skeleton joints based on 3D anthropometric information from multi-modal data. Given a set of keypoints, RGB and depth data are aligned, depth surface is reconstructed, keypoints are matched, and accurate measurements about posture and spinal curvature are computed. Given a set of joints, range of movement measurements is also obtained. Moreover, gesture recognition based on joint movements is performed to look for the correctness in the development of physical exercises. The system shows high precision and reliable measurements, being useful for posture reeducation purposes to prevent MSDs, as well as tracking the posture evolution of patients in rehabilitation treatments.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ RCR2013 Serial 2252  
Permanent link to this record
 

 
Author Miguel Angel Bautista; Sergio Escalera; Xavier Baro; Petia Radeva; Jordi Vitria; Oriol Pujol edit  doi
openurl 
  Title Minimal Design of Error-Correcting Output Codes Type Journal Article
  Year 2011 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 33 Issue 6 Pages 693-702  
  Keywords (down) Multi-class classification; Error-correcting output codes; Ensemble of classifiers  
  Abstract IF JCR CCIA 1.303 2009 54/103
The classification of large number of object categories is a challenging trend in the pattern recognition field. In literature, this is often addressed using an ensemble of classifiers. In this scope, the Error-correcting output codes framework has demonstrated to be a powerful tool for combining classifiers. However, most state-of-the-art ECOC approaches use a linear or exponential number of classifiers, making the discrimination of a large number of classes unfeasible. In this paper, we explore and propose a minimal design of ECOC in terms of the number of classifiers. Evolutionary computation is used for tuning the parameters of the classifiers and looking for the best minimal ECOC code configuration. The results over several public UCI datasets and different multi-class computer vision problems show that the proposed methodology obtains comparable (even better) results than state-of-the-art ECOC methodologies with far less number of dichotomizers.
 
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; OR;HuPBA;MV Approved no  
  Call Number Admin @ si @ BEB2011a Serial 1800  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: