toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author O.F.Ahmad; Y.Mori; M.Misawa; S.Kudo; J.T.Anderson; Jorge Bernal edit  url
doi  openurl
  Title Establishing key research questions for the implementation of artificial intelligence in colonoscopy: a modified Delphi method Type Journal Article
  Year 2021 Publication Endoscopy Abbreviated Journal END  
  Volume 53 Issue (down) 9 Pages 893-901  
  Keywords  
  Abstract BACKGROUND : Artificial intelligence (AI) research in colonoscopy is progressing rapidly but widespread clinical implementation is not yet a reality. We aimed to identify the top implementation research priorities. METHODS : An established modified Delphi approach for research priority setting was used. Fifteen international experts, including endoscopists and translational computer scientists/engineers, from nine countries participated in an online survey over 9 months. Questions related to AI implementation in colonoscopy were generated as a long-list in the first round, and then scored in two subsequent rounds to identify the top 10 research questions. RESULTS : The top 10 ranked questions were categorized into five themes. Theme 1: clinical trial design/end points (4 questions), related to optimum trial designs for polyp detection and characterization, determining the optimal end points for evaluation of AI, and demonstrating impact on interval cancer rates. Theme 2: technological developments (3 questions), including improving detection of more challenging and advanced lesions, reduction of false-positive rates, and minimizing latency. Theme 3: clinical adoption/integration (1 question), concerning the effective combination of detection and characterization into one workflow. Theme 4: data access/annotation (1 question), concerning more efficient or automated data annotation methods to reduce the burden on human experts. Theme 5: regulatory approval (1 question), related to making regulatory approval processes more efficient. CONCLUSIONS : This is the first reported international research priority setting exercise for AI in colonoscopy. The study findings should be used as a framework to guide future research with key stakeholders to accelerate the clinical implementation of AI in endoscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ AMM2021 Serial 3670  
Permanent link to this record
 

 
Author Ana Garcia Rodriguez; Yael Tudela; Henry Cordova; S. Carballal; I. Ordas; L. Moreira; E. Vaquero; O. Ortiz; L. Rivero; F. Javier Sanchez; Miriam Cuatrecasas; Maria Pellise; Jorge Bernal; Gloria Fernandez Esparrach edit  doi
openurl 
  Title In vivo computer-aided diagnosis of colorectal polyps using white light endoscopy Type Journal Article
  Year 2022 Publication Endoscopy International Open Abbreviated Journal ENDIO  
  Volume 10 Issue (down) 9 Pages E1201-E1207  
  Keywords  
  Abstract Background and study aims Artificial intelligence is currently able to accurately predict the histology of colorectal polyps. However, systems developed to date use complex optical technologies and have not been tested in vivo. The objective of this study was to evaluate the efficacy of a new deep learning-based optical diagnosis system, ATENEA, in a real clinical setting using only high-definition white light endoscopy (WLE) and to compare its performance with endoscopists. Methods ATENEA was prospectively tested in real life on consecutive polyps detected in colorectal cancer screening colonoscopies at Hospital Clínic. No images were discarded, and only WLE was used. The in vivo ATENEA's prediction (adenoma vs non-adenoma) was compared with the prediction of four staff endoscopists without specific training in optical diagnosis for the study purposes. Endoscopists were blind to the ATENEA output. Histology was the gold standard. Results Ninety polyps (median size: 5 mm, range: 2-25) from 31 patients were included of which 69 (76.7 %) were adenomas. ATENEA correctly predicted the histology in 63 of 69 (91.3 %, 95 % CI: 82 %-97 %) adenomas and 12 of 21 (57.1 %, 95 % CI: 34 %-78 %) non-adenomas while endoscopists made correct predictions in 52 of 69 (75.4 %, 95 % CI: 60 %-85 %) and 20 of 21 (95.2 %, 95 % CI: 76 %-100 %), respectively. The global accuracy was 83.3 % (95 % CI: 74%-90 %) and 80 % (95 % CI: 70 %-88 %) for ATENEA and endoscopists, respectively. Conclusion ATENEA can accurately be used for in vivo characterization of colorectal polyps, enabling the endoscopist to make direct decisions. ATENEA showed a global accuracy similar to that of endoscopists despite an unsatisfactory performance for non-adenomatous lesions.  
  Address 2022 Sep 14  
  Corporate Author Thesis  
  Publisher PMID Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.157 Approved no  
  Call Number Admin @ si @ GTC2022b Serial 3752  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Lluis Albarracin; F. Javier Sanchez edit  doi
openurl 
  Title Graph-Based Problem Explorer: A Software Tool to Support Algorithm Design Learning While Solving the Salesperson Problem Type Journal
  Year 2020 Publication Mathematics Abbreviated Journal MATH  
  Volume 20 Issue (down) 8(9) Pages 1595  
  Keywords STEM education; Project-based learning; Coding; software tool  
  Abstract In this article, we present a sequence of activities in the form of a project in order to promote
learning on design and analysis of algorithms. The project is based on the resolution of a real problem, the salesperson problem, and it is theoretically grounded on the fundamentals of mathematical modelling. In order to support the students’ work, a multimedia tool, called Graph-based Problem Explorer (GbPExplorer), has been designed and refined to promote the development of computer literacy in engineering and science university students. This tool incorporates several modules to allow coding different algorithmic techniques solving the salesman problem. Based on an educational design research along five years, we observe that working with GbPExplorer during the project provides students with the possibility of representing the situation to be studied in the form of graphs and analyze them from a computational point of view.
 
  Address September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; ISE Approved no  
  Call Number Admin @ si @ Serial 3722  
Permanent link to this record
 

 
Author Albert Ali Salah; E. Pauwels; R. Tavenard; Theo Gevers edit  doi
openurl 
  Title T-Patterns Revisited: Mining for Temporal Patterns in Sensor Data Type Journal Article
  Year 2010 Publication Sensors Abbreviated Journal SENS  
  Volume 10 Issue (down) 8 Pages 7496-7513  
  Keywords sensor networks; temporal pattern extraction; T-patterns; Lempel-Ziv; Gaussian mixture model; MERL motion data  
  Abstract The trend to use large amounts of simple sensors as opposed to a few complex sensors to monitor places and systems creates a need for temporal pattern mining algorithms to work on such data. The methods that try to discover re-usable and interpretable patterns in temporal event data have several shortcomings. We contrast several recent approaches to the problem, and extend the T-Pattern algorithm, which was previously applied for detection of sequential patterns in behavioural sciences. The temporal complexity of the T-pattern approach is prohibitive in the scenarios we consider. We remedy this with a statistical model to obtain a fast and robust algorithm to find patterns in temporal data. We test our algorithm on a recent database collected with passive infrared sensors with millions of events.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ SPT2010 Serial 1845  
Permanent link to this record
 

 
Author Noha Elfiky; Jordi Gonzalez; Xavier Roca edit   pdf
doi  openurl
  Title Compact and Adaptive Spatial Pyramids for Scene Recognition Type Journal Article
  Year 2012 Publication Image and Vision Computing Abbreviated Journal IMAVIS  
  Volume 30 Issue (down) 8 Pages 492–500  
  Keywords  
  Abstract Most successful approaches on scenerecognition tend to efficiently combine global image features with spatial local appearance and shape cues. On the other hand, less attention has been devoted for studying spatial texture features within scenes. Our method is based on the insight that scenes can be seen as a composition of micro-texture patterns. This paper analyzes the role of texture along with its spatial layout for scenerecognition. However, one main drawback of the resulting spatial representation is its huge dimensionality. Hence, we propose a technique that addresses this problem by presenting a compactSpatialPyramid (SP) representation. The basis of our compact representation, namely, CompactAdaptiveSpatialPyramid (CASP) consists of a two-stages compression strategy. This strategy is based on the Agglomerative Information Bottleneck (AIB) theory for (i) compressing the least informative SP features, and, (ii) automatically learning the most appropriate shape for each category. Our method exceeds the state-of-the-art results on several challenging scenerecognition data sets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ EGR2012 Serial 2004  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: