toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Pau Rodriguez; Guillem Cucurull; Josep M. Gonfaus; Xavier Roca; Jordi Gonzalez edit   pdf
url  openurl
  Title Age and gender recognition in the wild with deep attention Type Journal Article
  Year 2017 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 72 Issue (up) Pages 563-571  
  Keywords Age recognition; Gender recognition; Deep neural networks; Attention mechanisms  
  Abstract Face analysis in images in the wild still pose a challenge for automatic age and gender recognition tasks, mainly due to their high variability in resolution, deformation, and occlusion. Although the performance has highly increased thanks to Convolutional Neural Networks (CNNs), it is still far from optimal when compared to other image recognition tasks, mainly because of the high sensitiveness of CNNs to facial variations. In this paper, inspired by biology and the recent success of attention mechanisms on visual question answering and fine-grained recognition, we propose a novel feedforward attention mechanism that is able to discover the most informative and reliable parts of a given face for improving age and gender classification. In particular, given a downsampled facial image, the proposed model is trained based on a novel end-to-end learning framework to extract the most discriminative patches from the original high-resolution image. Experimental validation on the standard Adience, Images of Groups, and MORPH II benchmarks show that including attention mechanisms enhances the performance of CNNs in terms of robustness and accuracy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.098; 602.133; 600.119 Approved no  
  Call Number Admin @ si @ RCG2017b Serial 2962  
Permanent link to this record
 

 
Author Parichehr Behjati Ardakani; Pau Rodriguez; Carles Fernandez; Armin Mehri; Xavier Roca; Seiichi Ozawa; Jordi Gonzalez edit  doi
openurl 
  Title Frequency-based Enhancement Network for Efficient Super-Resolution Type Journal Article
  Year 2022 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 10 Issue (up) Pages 57383-57397  
  Keywords Deep learning; Frequency-based methods; Lightweight architectures; Single image super-resolution  
  Abstract Recently, deep convolutional neural networks (CNNs) have provided outstanding performance in single image super-resolution (SISR). Despite their remarkable performance, the lack of high-frequency information in the recovered images remains a core problem. Moreover, as the networks increase in depth and width, deep CNN-based SR methods are faced with the challenge of computational complexity in practice. A promising and under-explored solution is to adapt the amount of compute based on the different frequency bands of the input. To this end, we present a novel Frequency-based Enhancement Block (FEB) which explicitly enhances the information of high frequencies while forwarding low-frequencies to the output. In particular, this block efficiently decomposes features into low- and high-frequency and assigns more computation to high-frequency ones. Thus, it can help the network generate more discriminative representations by explicitly recovering finer details. Our FEB design is simple and generic and can be used as a direct replacement of commonly used SR blocks with no need to change network architectures. We experimentally show that when replacing SR blocks with FEB we consistently improve the reconstruction error, while reducing the number of parameters in the model. Moreover, we propose a lightweight SR model — Frequency-based Enhancement Network (FENet) — based on FEB that matches the performance of larger models. Extensive experiments demonstrate that our proposal performs favorably against the state-of-the-art SR algorithms in terms of visual quality, memory footprint, and inference time. The code is available at https://github.com/pbehjatii/FENet  
  Address 18 May 2022  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ BRF2022a Serial 3747  
Permanent link to this record
 

 
Author Pau Rodriguez; Miguel Angel Bautista; Sergio Escalera; Jordi Gonzalez edit   pdf
url  doi
openurl 
  Title Beyond Oneshot Encoding: lower dimensional target embedding Type Journal Article
  Year 2018 Publication Image and Vision Computing Abbreviated Journal IMAVIS  
  Volume 75 Issue (up) Pages 21-31  
  Keywords Error correcting output codes; Output embeddings; Deep learning; Computer vision  
  Abstract Target encoding plays a central role when learning Convolutional Neural Networks. In this realm, one-hot encoding is the most prevalent strategy due to its simplicity. However, this so widespread encoding schema assumes a flat label space, thus ignoring rich relationships existing among labels that can be exploited during training. In large-scale datasets, data does not span the full label space, but instead lies in a low-dimensional output manifold. Following this observation, we embed the targets into a low-dimensional space, drastically improving convergence speed while preserving accuracy. Our contribution is two fold: (i) We show that random projections of the label space are a valid tool to find such lower dimensional embeddings, boosting dramatically convergence rates at zero computational cost; and (ii) we propose a normalized eigenrepresentation of the class manifold that encodes the targets with minimal information loss, improving the accuracy of random projections encoding while enjoying the same convergence rates. Experiments on CIFAR-100, CUB200-2011, Imagenet, and MIT Places demonstrate that the proposed approach drastically improves convergence speed while reaching very competitive accuracy rates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; HuPBA; 600.098; 602.133; 602.121; 600.119 Approved no  
  Call Number Admin @ si @ RBE2018 Serial 3120  
Permanent link to this record
 

 
Author Ana Garcia Rodriguez; Yael Tudela; Henry Cordova; S. Carballal; I. Ordas; L. Moreira; E. Vaquero; O. Ortiz; L. Rivero; F. Javier Sanchez; Miriam Cuatrecasas; Maria Pellise; Jorge Bernal; Gloria Fernandez Esparrach edit  doi
openurl 
  Title First in Vivo Computer-Aided Diagnosis of Colorectal Polyps using White Light Endoscopy Type Journal Article
  Year 2022 Publication Endoscopy Abbreviated Journal END  
  Volume 54 Issue (up) Pages  
  Keywords  
  Abstract  
  Address 2022/04/14  
  Corporate Author Thesis  
  Publisher Georg Thieme Verlag KG Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ GTC2022a Serial 3746  
Permanent link to this record
 

 
Author Diego Velazquez; Josep M. Gonfaus; Pau Rodriguez; Xavier Roca; Seiichi Ozawa; Jordi Gonzalez edit  url
doi  openurl
  Title Logo Detection With No Priors Type Journal Article
  Year 2021 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 9 Issue (up) Pages 106998-107011  
  Keywords  
  Abstract In recent years, top referred methods on object detection like R-CNN have implemented this task as a combination of proposal region generation and supervised classification on the proposed bounding boxes. Although this pipeline has achieved state-of-the-art results in multiple datasets, it has inherent limitations that make object detection a very complex and inefficient task in computational terms. Instead of considering this standard strategy, in this paper we enhance Detection Transformers (DETR) which tackles object detection as a set-prediction problem directly in an end-to-end fully differentiable pipeline without requiring priors. In particular, we incorporate Feature Pyramids (FP) to the DETR architecture and demonstrate the effectiveness of the resulting DETR-FP approach on improving logo detection results thanks to the improved detection of small logos. So, without requiring any domain specific prior to be fed to the model, DETR-FP obtains competitive results on the OpenLogo and MS-COCO datasets offering a relative improvement of up to 30%, when compared to a Faster R-CNN baseline which strongly depends on hand-designed priors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ VGR2021 Serial 3664  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: