toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Jorge Bernal; F. Javier Sanchez; Gloria Fernandez Esparrach; Debora Gil; Cristina Rodriguez de Miguel; Fernando Vilariño edit   pdf
doi  openurl
  Title WM-DOVA Maps for Accurate Polyp Highlighting in Colonoscopy: Validation vs. Saliency Maps from Physicians Type Journal Article
  Year 2015 Publication Computerized Medical Imaging and Graphics Abbreviated Journal CMIG  
  Volume 43 Issue Pages 99-111  
  Keywords Polyp localization; Energy Maps; Colonoscopy; Saliency; Valley detection  
  Abstract We introduce in this paper a novel polyp localization method for colonoscopy videos. Our method is based on a model of appearance for polyps which defines polyp boundaries in terms of valley information. We propose the integration of valley information in a robust way fostering complete, concave and continuous boundaries typically associated to polyps. This integration is done by using a window of radial sectors which accumulate valley information to create WMDOVA1 energy maps related with the likelihood of polyp presence. We perform a double validation of our maps, which include the introduction of two new databases, including the first, up to our knowledge, fully annotated database with clinical metadata associated. First we assess that the highest value corresponds with the location of the polyp in the image. Second, we show that WM-DOVA energy maps can be comparable with saliency maps obtained from physicians' fixations obtained via an eye-tracker. Finally, we prove that our method outperforms state-of-the-art computational saliency results. Our method shows good performance, particularly for small polyps which are reported to be the main sources of polyp miss-rate, which indicates the potential applicability of our method in clinical practice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0895-6111 ISBN Medium  
  Area Expedition Conference  
  Notes MV; IAM; 600.047; 600.060; 600.075;SIAI Approved no  
  Call Number Admin @ si @ BSF2015 Serial 2609  
Permanent link to this record
 

 
Author L. Calvet; A. Ferrer; M. Gomes; A. Juan; David Masip edit   pdf
doi  openurl
  Title Combining Statistical Learning with Metaheuristics for the Multi-Depot Vehicle Routing Problem with Market Segmentation Type Journal Article
  Year 2016 Publication Computers & Industrial Engineering Abbreviated Journal CIE  
  Volume 94 Issue Pages 93-104  
  Keywords Multi-Depot Vehicle Routing Problem; market segmentation applications; hybrid algorithms; statistical learning  
  Abstract In real-life logistics and distribution activities it is usual to face situations in which the distribution of goods has to be made from multiple warehouses or depots to the nal customers. This problem is known as the Multi-Depot Vehicle Routing Problem (MDVRP), and it typically includes two sequential and correlated stages: (a) the assignment map of customers to depots, and (b) the corresponding design of the distribution routes. Most of the existing work in the literature has focused on minimizing distance-based distribution costs while satisfying a number of capacity constraints. However, no attention has been given so far to potential variations in demands due to the tness of the customerdepot mapping in the case of heterogeneous depots. In this paper, we consider this realistic version of the problem in which the depots are heterogeneous in terms of their commercial o er and customers show di erent willingness to consume depending on how well the assigned depot ts their preferences. Thus, we assume that di erent customer-depot assignment maps will lead to di erent customer-expenditure levels. As a consequence, market-segmentation strategiesneed to be considered in order to increase sales and total income while accounting for the distribution costs. To solve this extension of the MDVRP, we propose a hybrid approach that combines statistical learning techniques with a metaheuristic framework. First, a set of predictive models is generated from historical data. These statistical models allow estimating the demand of any customer depending on the assigned depot. Then, the estimated expenditure of each customer is included as part of an enriched objective function as a way to better guide the stochastic local search inside the metaheuristic framework. A set of computational experiments contribute to illustrate our approach and how the extended MDVRP considered here di ers in terms of the proposed solutions from the traditional one.  
  Address  
  Corporate Author Thesis  
  Publisher PERGAMON-ELSEVIER SCIENCE LTD Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title CIE  
  Series Volume Series Issue Edition  
  ISSN (down) 0360-8352 ISBN Medium  
  Area Expedition Conference  
  Notes OR;MV; Approved no  
  Call Number Admin @ si @ CFG2016 Serial 2749  
Permanent link to this record
 

 
Author Fernando Vilariño; Panagiota Spyridonos; Fosca De Iorio; Jordi Vitria; Fernando Azpiroz; Petia Radeva edit   pdf
doi  openurl
  Title Intestinal Motility Assessment With Video Capsule Endoscopy: Automatic Annotation of Phasic Intestinal Contractions Type Journal Article
  Year 2010 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI  
  Volume 29 Issue 2 Pages 246-259  
  Keywords  
  Abstract Intestinal motility assessment with video capsule endoscopy arises as a novel and challenging clinical fieldwork. This technique is based on the analysis of the patterns of intestinal contractions shown in a video provided by an ingestible capsule with a wireless micro-camera. The manual labeling of all the motility events requires large amount of time for offline screening in search of findings with low prevalence, which turns this procedure currently unpractical. In this paper, we propose a machine learning system to automatically detect the phasic intestinal contractions in video capsule endoscopy, driving a useful but not feasible clinical routine into a feasible clinical procedure. Our proposal is based on a sequential design which involves the analysis of textural, color, and blob features together with SVM classifiers. Our approach tackles the reduction of the imbalance rate of data and allows the inclusion of domain knowledge as new stages in the cascade. We present a detailed analysis, both in a quantitative and a qualitative way, by providing several measures of performance and the assessment study of interobserver variability. Our system performs at 70% of sensitivity for individual detection, whilst obtaining equivalent patterns to those of the experts for density of contractions.  
  Address  
  Corporate Author IEEE Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0278-0062 ISBN Medium  
  Area 800 Expedition Conference  
  Notes MILAB;MV;OR;SIAI Approved no  
  Call Number BCNPCL @ bcnpcl @ VSD2010; IAM @ iam @ VSI2010 Serial 1281  
Permanent link to this record
 

 
Author Bogdan Raducanu; Jordi Vitria; Ales Leonardis edit  url
doi  openurl
  Title Online pattern recognition and machine learning techniques for computer-vision: Theory and applications Type Journal Article
  Year 2010 Publication Image and Vision Computing Abbreviated Journal IMAVIS  
  Volume 28 Issue 7 Pages 1063–1064  
  Keywords  
  Abstract (Editorial for the Special Issue on Online pattern recognition and machine learning techniques)
In real life, visual learning is supposed to be a continuous process. This paradigm has found its way also in artificial vision systems. There is an increasing trend in pattern recognition represented by online learning approaches, which aims at continuously updating the data representation when new information arrives. Starting with a minimal dataset, the initial knowledge is expanded by incorporating incoming instances, which may have not been previously available or foreseen at the system’s design stage. An interesting characteristic of this strategy is that the train and test phases take place simultaneously. Given the increasing interest in this subject, the aim of this special issue is to be a landmark event in the development of online learning techniques and their applications with the hope that it will capture the interest of a wider audience and will attract even more researchers. We received 19 contributions, of which 9 have been accepted for publication, after having been subjected to usual peer review process.
 
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0262-8856 ISBN Medium  
  Area Expedition Conference  
  Notes OR;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ RVL2010 Serial 1280  
Permanent link to this record
 

 
Author Sergio Escalera; David Masip; Eloi Puertas; Petia Radeva; Oriol Pujol edit  doi
openurl 
  Title Online Error-Correcting Output Codes Type Journal Article
  Year 2011 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 32 Issue 3 Pages 458-467  
  Keywords  
  Abstract IF JCR CCIA 1.303 2009 54/103
This article proposes a general extension of the error correcting output codes framework to the online learning scenario. As a result, the final classifier handles the addition of new classes independently of the base classifier used. In particular, this extension supports the use of both online example incremental and batch classifiers as base learners. The extension of the traditional problem independent codings one-versus-all and one-versus-one is introduced. Furthermore, two new codings are proposed, unbalanced online ECOC and a problem dependent online ECOC. This last online coding technique takes advantage of the problem data for minimizing the number of dichotomizers used in the ECOC framework while preserving a high accuracy. These techniques are validated on an online setting of 11 data sets from UCI database and applied to two real machine vision applications: traffic sign recognition and face recognition. As a result, the online ECOC techniques proposed provide a feasible and robust way for handling new classes using any base classifier.
 
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication North Holland Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;OR;HuPBA;MV Approved no  
  Call Number Admin @ si @ EMP2011 Serial 1714  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: