toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Frederic Sampedro; Sergio Escalera; Anna Domenech; Ignasi Carrio edit  doi
openurl 
  Title Automatic Tumor Volume Segmentation in Whole-Body PET/CT Scans: A Supervised Learning Approach Source Type Journal Article
  Year 2015 Publication Journal of Medical Imaging and Health Informatics Abbreviated Journal JMIHI  
  Volume 5 Issue 2 Pages 192-201  
  Keywords CONTEXTUAL CLASSIFICATION; PET/CT; SUPERVISED LEARNING; TUMOR SEGMENTATION; WHOLE BODY  
  Abstract Whole-body 3D PET/CT tumoral volume segmentation provides relevant diagnostic and prognostic information in clinical oncology and nuclear medicine. Carrying out this procedure manually by a medical expert is time consuming and suffers from inter- and intra-observer variabilities. In this paper, a completely automatic approach to this task is presented. First, the problem is stated and described both in clinical and technological terms. Then, a novel supervised learning segmentation framework is introduced. The segmentation by learning approach is defined within a Cascade of Adaboost classifiers and a 3D contextual proposal of Multiscale Stacked Sequential Learning. Segmentation accuracy results on 200 Breast Cancer whole body PET/CT volumes show mean 49% sensitivity, 99.993% specificity and 39% Jaccard overlap Index, which represent good performance results both at the clinical and technological level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number (down) Admin @ si @ SED2015 Serial 2584  
Permanent link to this record
 

 
Author Frederic Sampedro; Sergio Escalera; Anna Domenech; Ignasi Carrio edit  doi
openurl 
  Title A computational framework for cancer response assessment based on oncological PET-CT scans Type Journal Article
  Year 2014 Publication Computers in Biology and Medicine Abbreviated Journal CBM  
  Volume 55 Issue Pages 92–99  
  Keywords Computer aided diagnosis; Nuclear medicine; Machine learning; Image processing; Quantitative analysis  
  Abstract In this work we present a comprehensive computational framework to help in the clinical assessment of cancer response from a pair of time consecutive oncological PET-CT scans. In this scenario, the design and implementation of a supervised machine learning system to predict and quantify cancer progression or response conditions by introducing a novel feature set that models the underlying clinical context is described. Performance results in 100 clinical cases (corresponding to 200 whole body PET-CT scans) in comparing expert-based visual analysis and classifier decision making show up to 70% accuracy within a completely automatic pipeline and 90% accuracy when providing the system with expert-guided PET tumor segmentation masks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number (down) Admin @ si @ SED2014 Serial 2606  
Permanent link to this record
 

 
Author Santiago Segui; Michal Drozdzal; Ekaterina Zaytseva; Fernando Azpiroz; Petia Radeva; Jordi Vitria edit   pdf
doi  openurl
  Title Detection of wrinkle frames in endoluminal videos using betweenness centrality measures for images Type Journal Article
  Year 2014 Publication IEEE Transactions on Information Technology in Biomedicine Abbreviated Journal TITB  
  Volume 18 Issue 6 Pages 1831-1838  
  Keywords Wireless Capsule Endoscopy; Small Bowel Motility Dysfunction; Contraction Detection; Structured Prediction; Betweenness Centrality  
  Abstract Intestinal contractions are one of the most important events to diagnose motility pathologies of the small intestine. When visualized by wireless capsule endoscopy (WCE), the sequence of frames that represents a contraction is characterized by a clear wrinkle structure in the central frames that corresponds to the folding of the intestinal wall. In this paper we present a new method to robustly detect wrinkle frames in full WCE videos by using a new mid-level image descriptor that is based on a centrality measure proposed for graphs. We present an extended validation, carried out in a very large database, that shows that the proposed method achieves state of the art performance for this task.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR; MILAB; 600.046;MV Approved no  
  Call Number (down) Admin @ si @ SDZ2014 Serial 2385  
Permanent link to this record
 

 
Author Santiago Segui; Michal Drozdzal; Fernando Vilariño; Carolina Malagelada; Fernando Azpiroz; Petia Radeva; Jordi Vitria edit   pdf
doi  openurl
  Title Categorization and Segmentation of Intestinal Content Frames for Wireless Capsule Endoscopy Type Journal Article
  Year 2012 Publication IEEE Transactions on Information Technology in Biomedicine Abbreviated Journal TITB  
  Volume 16 Issue 6 Pages 1341-1352  
  Keywords  
  Abstract Wireless capsule endoscopy (WCE) is a device that allows the direct visualization of gastrointestinal tract with minimal discomfort for the patient, but at the price of a large amount of time for screening. In order to reduce this time, several works have proposed to automatically remove all the frames showing intestinal content. These methods label frames as {intestinal content – clear} without discriminating between types of content (with different physiological meaning) or the portion of image covered. In addition, since the presence of intestinal content has been identified as an indicator of intestinal motility, its accurate quantification can show a potential clinical relevance. In this paper, we present a method for the robust detection and segmentation of intestinal content in WCE images, together with its further discrimination between turbid liquid and bubbles. Our proposal is based on a twofold system. First, frames presenting intestinal content are detected by a support vector machine classifier using color and textural information. Second, intestinal content frames are segmented into {turbid, bubbles, and clear} regions. We show a detailed validation using a large dataset. Our system outperforms previous methods and, for the first time, discriminates between turbid from bubbles media.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1089-7771 ISBN Medium  
  Area 800 Expedition Conference  
  Notes MILAB; MV; OR;SIAI Approved no  
  Call Number (down) Admin @ si @ SDV2012 Serial 2124  
Permanent link to this record
 

 
Author Santiago Segui; Michal Drozdzal; Guillem Pascual; Petia Radeva; Carolina Malagelada; Fernando Azpiroz; Jordi Vitria edit   pdf
url  openurl
  Title Generic Feature Learning for Wireless Capsule Endoscopy Analysis Type Journal Article
  Year 2016 Publication Computers in Biology and Medicine Abbreviated Journal CBM  
  Volume 79 Issue Pages 163-172  
  Keywords Wireless capsule endoscopy; Deep learning; Feature learning; Motility analysis  
  Abstract The interpretation and analysis of wireless capsule endoscopy (WCE) recordings is a complex task which requires sophisticated computer aided decision (CAD) systems to help physicians with video screening and, finally, with the diagnosis. Most CAD systems used in capsule endoscopy share a common system design, but use very different image and video representations. As a result, each time a new clinical application of WCE appears, a new CAD system has to be designed from the scratch. This makes the design of new CAD systems very time consuming. Therefore, in this paper we introduce a system for small intestine motility characterization, based on Deep Convolutional Neural Networks, which circumvents the laborious step of designing specific features for individual motility events. Experimental results show the superiority of the learned features over alternative classifiers constructed using state-of-the-art handcrafted features. In particular, it reaches a mean classification accuracy of 96% for six intestinal motility events, outperforming the other classifiers by a large margin (a 14% relative performance increase).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR; MILAB;MV; Approved no  
  Call Number (down) Admin @ si @ SDP2016 Serial 2836  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: