toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Oriol Rodriguez-Leor; J. Mauri; Eduard Fernandez-Nofrerias; C. Garcia; R. Villuendas; Vicente del Valle; Debora Gil; Petia Radeva edit  openurl
  Title Reconstruction of a spatio-temporal model of the intima layer from intravascular ultrasound sequences Type Journal Article
  Year 2003 Publication European Heart Journal Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ESC Congress  
  Notes IAM;MILAB Approved no  
  Call Number (up) IAM @ iam @ RMF2003c Serial 1641  
Permanent link to this record
 

 
Author Oriol Rodriguez-Leor; J. Mauri; Eduard Fernandez-Nofrerias; Antonio Tovar; Vicente del Valle; Aura Hernandez-Sabate; Debora Gil; Petia Radeva edit  openurl
  Title Utilización de la Estructura de los Campos Vectoriales para la Detección de la Adventicia en Imágenes de Ecografía Intracoronaria Type Journal Article
  Year 2004 Publication Revista Internacional de Enfermedades Cardiovasculares Revista Española de Cardiología Abbreviated Journal  
  Volume 57 Issue 2 Pages 100  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SEC  
  Notes IAM;MILAB Approved no  
  Call Number (up) IAM @ iam @ RMF2004 Serial 1642  
Permanent link to this record
 

 
Author David Rotger; Misael Rosales; Jaume Garcia; Oriol Pujol ; J. Mauri; Petia Radeva edit   pdf
doi  openurl
  Title Active Vessel: A New Multimedia Workstation for Intravascular Ultrasound and Angiography Fusion Type Journal Article
  Year 2003 Publication Computers in Cardiology Abbreviated Journal  
  Volume 30 Issue Pages 65-68  
  Keywords  
  Abstract AcriveVessel is a new multimedia workstation which enables the visualization, acquisition and handling of both image modalities, on- and ofline. It enables DICOM v3.0 decompression and browsing, video acquisition,repmduction and storage for IntraVascular UltraSound (IVUS) and angiograms with their corresponding ECG,automatic catheter segmentation in angiography images (using fast marching algorithm). BSpline models definition for vessel layers on IVUS images sequence and an extensively validated tool to fuse information. This approach defines the correspondence of every IVUS image with its correspondent point in the angiogram and viceversa. The 3 0 reconstruction of the NUS catheterhessel enables real distance measurements as well as threedimensional visualization showing vessel tortuosity in the space.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB;HuPBA Approved no  
  Call Number (up) IAM @ iam @ RRG2003 Serial 1647  
Permanent link to this record
 

 
Author Misael Rosales; Petia Radeva; Oriol Rodriguez-Leor; Debora Gil edit   pdf
doi  openurl
  Title Modelling of image-catheter motion for 3-D IVUS Type Journal Article
  Year 2009 Publication Medical image analysis Abbreviated Journal MIA  
  Volume 13 Issue 1 Pages 91-104  
  Keywords Intravascular ultrasound (IVUS); Motion estimation; Motion decomposition; Fourier  
  Abstract Three-dimensional intravascular ultrasound (IVUS) allows to visualize and obtain volumetric measurements of coronary lesions through an exploration of the cross sections and longitudinal views of arteries. However, the visualization and subsequent morpho-geometric measurements in IVUS longitudinal cuts are subject to distortion caused by periodic image/vessel motion around the IVUS catheter. Usually, to overcome the image motion artifact ECG-gating and image-gated approaches are proposed, leading to slowing the pullback acquisition or disregarding part of IVUS data. In this paper, we argue that the image motion is due to 3-D vessel geometry as well as cardiac dynamics, and propose a dynamic model based on the tracking of an elliptical vessel approximation to recover the rigid transformation and align IVUS images without loosing any IVUS data. We report an extensive validation with synthetic simulated data and in vivo IVUS sequences of 30 patients achieving an average reduction of the image artifact of 97% in synthetic data and 79% in real-data. Our study shows that IVUS alignment improves longitudinal analysis of the IVUS data and is a necessary step towards accurate reconstruction and volumetric measurements of 3-D IVUS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number (up) IAM @ iam @ RRR2009 Serial 1646  
Permanent link to this record
 

 
Author Mariano Vazquez; Ruth Aris; Guillaume Hozeaux; R.Aubry; P.Villar;Jaume Garcia ; Debora Gil; Francesc Carreras edit   pdf
url  doi
openurl 
  Title A massively parallel computational electrophysiology model of the heart Type Journal Article
  Year 2011 Publication International Journal for Numerical Methods in Biomedical Engineering Abbreviated Journal IJNMBE  
  Volume 27 Issue Pages 1911-1929  
  Keywords computational electrophysiology; parallelization; finite element methods  
  Abstract This paper presents a patient-sensitive simulation strategy capable of using the most efficient way the high-performance computational resources. The proposed strategy directly involves three different players: Computational Mechanics Scientists (CMS), Image Processing Scientists and Cardiologists, each one mastering its own expertise area within the project. This paper describes the general integrative scheme but focusing on the CMS side presents a massively parallel implementation of computational electrophysiology applied to cardiac tissue simulation. The paper covers different angles of the computational problem: equations, numerical issues, the algorithm and parallel implementation. The proposed methodology is illustrated with numerical simulations testing all the different possibilities, ranging from small domains up to very large ones. A key issue is the almost ideal scalability not only for large and complex problems but also for medium-size meshes. The explicit formulation is particularly well suited for solving this highly transient problems, with very short time-scale.  
  Address Swansea (UK)  
  Corporate Author John Wiley & Sons, Ltd. Thesis  
  Publisher John Wiley & Sons, Ltd. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number (up) IAM @ iam @ VAH2011 Serial 1198  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: