toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (down) Bhaskar Chakraborty; Andrew Bagdanov; Jordi Gonzalez; Xavier Roca edit   pdf
doi  openurl
  Title Human Action Recognition Using an Ensemble of Body-Part Detectors Type Journal Article
  Year 2013 Publication Expert Systems Abbreviated Journal EXSY  
  Volume 30 Issue 2 Pages 101-114  
  Keywords Human action recognition;body-part detection;hidden Markov model  
  Abstract This paper describes an approach to human action recognition based on a probabilistic optimization model of body parts using hidden Markov model (HMM). Our method is able to distinguish between similar actions by only considering the body parts having major contribution to the actions, for example, legs for walking, jogging and running; arms for boxing, waving and clapping. We apply HMMs to model the stochastic movement of the body parts for action recognition. The HMM construction uses an ensemble of body-part detectors, followed by grouping of part detections, to perform human identification. Three example-based body-part detectors are trained to detect three components of the human body: the head, legs and arms. These detectors cope with viewpoint changes and self-occlusions through the use of ten sub-classifiers that detect body parts over a specific range of viewpoints. Each sub-classifier is a support vector machine trained on features selected for the discriminative power for each particular part/viewpoint combination. Grouping of these detections is performed using a simple geometric constraint model that yields a viewpoint-invariant human detector. We test our approach on three publicly available action datasets: the KTH dataset, Weizmann dataset and HumanEva dataset. Our results illustrate that with a simple and compact representation we can achieve robust recognition of human actions comparable to the most complex, state-of-the-art methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ CBG2013 Serial 1809  
Permanent link to this record
 

 
Author (down) Aura Hernandez-Sabate; Lluis Albarracin; F. Javier Sanchez edit  doi
openurl 
  Title Graph-Based Problem Explorer: A Software Tool to Support Algorithm Design Learning While Solving the Salesperson Problem Type Journal
  Year 2020 Publication Mathematics Abbreviated Journal MATH  
  Volume 20 Issue 8(9) Pages 1595  
  Keywords STEM education; Project-based learning; Coding; software tool  
  Abstract In this article, we present a sequence of activities in the form of a project in order to promote
learning on design and analysis of algorithms. The project is based on the resolution of a real problem, the salesperson problem, and it is theoretically grounded on the fundamentals of mathematical modelling. In order to support the students’ work, a multimedia tool, called Graph-based Problem Explorer (GbPExplorer), has been designed and refined to promote the development of computer literacy in engineering and science university students. This tool incorporates several modules to allow coding different algorithmic techniques solving the salesman problem. Based on an educational design research along five years, we observe that working with GbPExplorer during the project provides students with the possibility of representing the situation to be studied in the form of graphs and analyze them from a computational point of view.
 
  Address September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; ISE Approved no  
  Call Number Admin @ si @ Serial 3722  
Permanent link to this record
 

 
Author (down) Arjan Gijsenij; Theo Gevers; Joost Van de Weijer edit  doi
openurl 
  Title Generalized Gamut Mapping using Image Derivative Structures for Color Constancy Type Journal Article
  Year 2010 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 86 Issue 2-3 Pages 127-139  
  Keywords  
  Abstract The gamut mapping algorithm is one of the most promising methods to achieve computational color constancy. However, so far, gamut mapping algorithms are restricted to the use of pixel values to estimate the illuminant. Therefore, in this paper, gamut mapping is extended to incorporate the statistical nature of images. It is analytically shown that the proposed gamut mapping framework is able to include any linear filter output. The main focus is on the local n-jet describing the derivative structure of an image. It is shown that derivatives have the advantage over pixel values to be invariant to disturbing effects (i.e. deviations of the diagonal model) such as saturated colors and diffuse light. Further, as the n-jet based gamut mapping has the ability to use more information than pixel values alone, the combination of these algorithms are more stable than the regular gamut mapping algorithm. Different methods of combining are proposed. Based on theoretical and experimental results conducted on large scale data sets of hyperspectral, laboratory and realworld scenes, it can be derived that (1) in case of deviations of the diagonal model, the derivative-based approach outperforms the pixel-based gamut mapping, (2) state-of-the-art algorithms are outperformed by the n-jet based gamut mapping, (3) the combination of the different n-jet based gamut  
  Address  
  Corporate Author Thesis  
  Publisher Kluwer Academic Publishers Hingham, MA, USA Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5691 ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number CAT @ cat @ GGW2010 Serial 1274  
Permanent link to this record
 

 
Author (down) Arjan Gijsenij; Theo Gevers; Joost Van de Weijer edit   pdf
url  doi
openurl 
  Title Computational Color Constancy: Survey and Experiments Type Journal Article
  Year 2011 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 20 Issue 9 Pages 2475-2489  
  Keywords computational color constancy;computer vision application;gamut-based method;learning-based method;static method;colour vision;computer vision;image colour analysis;learning (artificial intelligence);lighting  
  Abstract Computational color constancy is a fundamental prerequisite for many computer vision applications. This paper presents a survey of many recent developments and state-of-the- art methods. Several criteria are proposed that are used to assess the approaches. A taxonomy of existing algorithms is proposed and methods are separated in three groups: static methods, gamut-based methods and learning-based methods. Further, the experimental setup is discussed including an overview of publicly available data sets. Finally, various freely available methods, of which some are considered to be state-of-the-art, are evaluated on two data sets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ISE;CIC Approved no  
  Call Number Admin @ si @ GGW2011 Serial 1717  
Permanent link to this record
 

 
Author (down) Arjan Gijsenij; Theo Gevers; Joost Van de Weijer edit   pdf
url  doi
openurl 
  Title Improving Color Constancy by Photometric Edge Weighting Type Journal Article
  Year 2012 Publication IEEE Transaction on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 34 Issue 5 Pages 918-929  
  Keywords  
  Abstract : Edge-based color constancy methods make use of image derivatives to estimate the illuminant. However, different edge types exist in real-world images such as material, shadow and highlight edges. These different edge types may have a distinctive influence on the performance of the illuminant estimation. Therefore, in this paper, an extensive analysis is provided of different edge types on the performance of edge-based color constancy methods. First, an edge-based taxonomy is presented classifying edge types based on their photometric properties (e.g. material, shadow-geometry and highlights). Then, a performance evaluation of edge-based color constancy is provided using these different edge types. From this performance evaluation it is derived that specular and shadow edge types are more valuable than material edges for the estimation of the illuminant. To this end, the (iterative) weighted Grey-Edge algorithm is proposed in which these edge types are more emphasized for the estimation of the illuminant. Images that are recorded under controlled circumstances demonstrate that the proposed iterative weighted Grey-Edge algorithm based on highlights reduces the median angular error with approximately $25\%$. In an uncontrolled environment, improvements in angular error up to $11\%$ are obtained with respect to regular edge-based color constancy.  
  Address Los Alamitos; CA; USA;  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes CIC;ISE Approved no  
  Call Number Admin @ si @ GGW2012 Serial 1850  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: