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Abstract

This paper describes an approach to human action recognition based on the

probabilistic optimization model of body parts using Hidden Markov Model (HMM).

Our proposed method is able to distinguish between similar actions by only consid-

ering the body parts having major contribution to the actions, for example, legs for

walking, jogging and running; hands for boxing, waving and clapping. We apply

HMMs to model the stochastic movement of the body-parts for action recognition.

The HMM construction requires an ensemble of body-part detectors, followed by

grouping of part detections to perform human identification. Three example-based

body part detectors are trained to detect three components of the human body:

the head, the legs and the arms. These detectors cope with viewpoint changes and

self-occlusions through the use of ten sub-classifiers that detect body parts under

a specific range of viewpoints. Each sub-classifier is a Support Vector Machine

(SVM) trained on features selected for the discriminative power for each particular

part/viewpoint combination. Grouping of these detections is then performed using

a simple geometric constraint model which yields a viewpoint invariant human de-

tector. We test our approach on the most commonly used action dataset, the KTH
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dataset, and obtain promising result, which proves that with a simple and compact

representation we can achieve robust recognition of human actions, compared to

complex representation.

1 Introduction

Visual recognition and understanding of human actions are among the most important

research areas in Computer Vision (Moeslund, et al. 2006, Shipley & Zacks 2008, Wang,

et al. 2003, Turaga, et al. 2008). Good solutions to these problems would yield huge

potential for many applications such as the search and structuring of large video archives,

video surveillance, human-computer interaction, gesture recognition and video editing.

Human detection and action recognition are extremely challenging due to the non-rigid

nature of humans in video sequences caused by changes in pose, changing illumination

conditions and erratic non-linear motion.

When viewed as a stochastic estimation problem, the critical issue in action recog-

nition becomes the definition and computation of the likelihood, Pr(a|H, I), of action

a given the human H in the image sequence I, since the human H is the main agent

performing the action a. The difficulty in working with this likelihood is directly related

to the complexity of the joint distribution Pr(H, I) over all possible human figures H

in the image sequence I. Holistic approaches which attempt to model the entire human

figure, generally, must resort to very sophisticated and complex models of this joint

distribution, resulting in very demanding model estimation and optimization problems.

Basic human actions can be represented using the local motion of individual body

parts. Actions like walking, jogging, running, boxing and waving are systematic com-

binations of the motion of different human body components. From this perspective,

it can also be observed that not all body parts contribute equally to all action classes.

For example, actions like walking, running and jogging are characterized mostly by the

movement of the legs. Boxing, waving and hand clapping, on the other hand, mostly

depend on the arms. Our approach is based on these observations and we define the

action likelihood Pr(a|H, I) instead as Pr(a|B, I), where B is an ensemble of body parts
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Figure 1: The proposed framework for action recognition based on probabilistic optimiza-

tion model of body parts using Hidden Markov Models (a) Construction of body-part

detectors and Action HMMs (b) Action recognition.

which the human H is composed of. Moreover, the likelihood is further simplified by

conditioning actions only on those body parts which contribute most to a particular ac-

tion. Features from body parts B are used to model the action likelihood Pr(a|B, I), and

optimizing this likelihood over all known actions yields a maximum likelihood estimate

of the action in the image sequence.

The ensemble of body part detectors is an important component of our method and

we use SVM-based body part detectors over a range of viewpoints to build viewpoint-

invariant body part detectors. We model human actions as a repeating chain of body-
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part poses (Chakraborty, et al. 2008). Similar poses are grouped together by applying a

Gaussian Mixture Model (GMM) on the features of the body parts in order to identify

key-poses. These key-poses then serve as a vocabulary of hidden action-states for Hidden

Markov Models (HMMs) that model the temporal-stochastic evolution of each action

class. Figure 1 shows the overview of our proposed method.

In the next section we review relevant work in the literature. Section 3 describes

our probabilistic model for action recognition. In section 4 we describe the viewpoint-

invariant part detectors used to define the part ensembles in an image sequence and the

HMM-based approach to model the likelihood. Section 4.2 describes the HMM learning

process. Experimental results are reported in section 5 and section 6 concludes the paper

with some discussions and indications of future research directions.

2 Related work

Several methods for learning and recognizing human actions directly from image mea-

surements have been proposed in the literature (Black & Jepson 1996, Davis & Bobick

1997, Zelnik-Manor & Irani 2001, Chomat & Crowley 1999). These global feature based

action recognition techniques mainly employ flow, interest points and silhouette features.

These methods may work well under fixed, well-defined conditions, but are not generally

applicable, especially for varying viewpoints. For example, accurately estimating the po-

sitions of joints in different view-points is an extremely difficult problem and is computa-

tionally expensive. Optical flow images are the least affected by appearance but are often

too noisy due to inaccuracies in flow calculation. A common issue with interest point

detectors is that the detected points are sometimes too few to sufficiently characterize

human actions, and hence reduce recognition performance. This issue has been avoided

in (Niebles, et al. 2008) by employing a separable linear filter (Dollár, et al. 2005), rather

than space-time interest point detectors, to obtain motion features using a quadrature

pair of 1D temporal Gabor filters. View-invariance in action recognition is addressed

in (Yilmaz & Shah 2005, Rao, et al. 2002, Parameswaran & Chellappa 2006). In our
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approach we overcome these problems by identifying human body parts under different

view-points and explicitly modelling their influences on action interpretation.

For action modelling and classification, many researchers use HMMs due to the

sequential-stochastic nature of human actions. The HMMs and AdaBoost are used to

recognize 3D human action, considering the joint position and pose angles (Fengjun &

Ramkant 2006). In (Ahmad & Lee 2006) action recognition is performed using silhouette

features and the Cartesian component of optical flow velocity. HMMs are then used to

classify actions. Also (Mendoza & de la Blanca 2007), detect human actions using HMMs

based on the contour histogram of full bodies. Again, all these methods use features

from the whole body to model the HMMs. Human silhouette changes intensely under

different view-points and the extracted features from the whole body do not represent

the action for all views. In our approach we reduce the complexity of HMM learning

by identifying the contributing body parts for an action. In this way action modelling

becomes more explicit and can be generalized in different view points.

Although conceptually appealing and promising, the merits of part-based models

have not yet been widely recognized in action recognition. One goal of this work is to

explore this area. Recent works on part-based event detection use hidden conditional

random fields (Wang & Mori 2008), flow based shape feature from body parts (Ke, et al.

2005) and Histograms of Oriented Rectangles (HORs) (Ikizler & Duygulu 2009). These

part-based approaches to action recognition employ complex learning techniques and the

general concept of view invariance is missing. Although very promising, these approaches

have several problems. Learning the parameters of a hidden conditional random field is a

very complex procedure and requires a lot of training examples. Methods like HOR need

to extract contours and filled silhouettes and the success of the method depends strongly

on the quality of those silhouettes. Our approach, in contrast, is built upon example-

based body part detectors which are simple to design and yet robust in functionality.

In our method we combine the advantages of full body and part-based action recog-

nition approaches. We use simple SVM-based body part detectors inspired by (Mohan,

et al. 2001), but instead of using Haar-like features we use HOGs (Dalal & Triggs 2005).
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The disadvantage of Haar-like features is that they are affected by human appearance,

while HOG features are designed to extract shape information from the human body

contour. Furthermore, we apply a feature selection technique to reduce the dimension-

ality of the resulting SVMs. Those selected features from the body parts are then used

to learn an HMM for each action class. We use Gaussian Mixture Models (GMM) to

identify the group of similar body-parts, that have major contribution in an action, to

obtain the action-states or key-poses. View-invariance is addressed by designing multiple

sub-classifiers for each body-part, responsible for detecting the body-limbs in different

view-points.

3 A probabilistic model for action recognition

The task of human action recognition can be formulated as an optimization problem.

Let A = {a1, a2, . . . , an} denote a set of possible actions, where each ai denotes a specific

action such as walking, running or hand clapping. We write the likelihood of a specific

action ai in a given image sequence I with human H as:

Pr(ai|H, I) for ai ∈ A.

Given an instance of I with detected human H, a maximum likelihood estimation of the

action being performed is:

a∗ = argmax
ai∈A

Pr(ai|H, I). (1)

Rather than holistically modelling the entire human H, we consider it to be an

ensemble of detectable body parts:

B = {B1, B2, . . . , Bm},

where each Bi represents one of m-body parts such as the head, legs, arms or torso. The

likelihood can now be expressed as:

Pr(ai|H, I) = Pr(ai|{B1, B2, ..., Bm}, I) (2)
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Our model strengthen the fact that not all actions depend equally on all body parts.

Actions like walking, jogging and running, for example, depend primarily on the legs.

Actions like boxing, waving and clapping, on the other hand, depend primarily on the

arms. To simplify the likelihood in (Equation 2), we define a dependence function over

the set of all subsets of body parts:

d(ai) : A −→ P(B),

where P(B) is the power set of B, or {c|c ⊆ B}.

The set d(ai) determines the subset of body parts on which action ai most strongly

depends. The likelihood is now approximated as:

Pr(ai|H, I) ≈ Pr(ai|d(ai), I), (3)

and the maximum likelihood estimate of the action given an ensemble of body parts and

an image sequence is:

a∗ = argmax
ai∈A

Pr(ai|d(ai), I). (4)

The approximate likelihood in Equation 3 makes explicit the dependence of an action

class on a subset of body parts. This approximation assumes that the action ai is inde-

pendent of the body parts excluded from d(ai) and thus the likelihood can be computed

by simply excluding the irrelevant parts rather than optimizing (or integrating) over

them. In the following sections we describe how we model the approximate likelihood

in Equation 3 using viewpoint invariant body-part detectors and HMMs over detected

features of these body parts, and then from these arrive at the estimate of Equation 4

for action classification.

4 Action modelling by HMM

Human action is a stochastic movement of an ensemble body parts. Moreover, for many

actions it is possible to find the body parts that have a major contribution on it. We

choose Hidden Markov Models for modelling Pr(ai|d(ai), I) [Equation 3] where d(ai) is

7



either Blegs or Barms. That is, we use d(ai) to indicate whether action ai depends mostly

on the arms or on the legs.

An HMM is a collection of finite states connected by transitions. Each state is char-

acterized by two sets of probabilities: a transition probability, and either a discrete out-

put probability distribution or a continuous output probability density function. These

functions define the conditional probability of emitting each output symbol from a finite

alphabet, conditioned on an unknown state. More formally, it is defined by: (1) A set

of states S, with an initial state SI and a final state SF ; (2) The transition probability

matrix, T = {tij}, where tij is the probability of taking the transition from state i to

state j and (3) The output probability matrix R. For a discrete HMM, R = {rj(Ok)},

where Ok represents a discrete observation symbol. The initial state distribution is π =

{πi}, and the complete parameter set of the HMM can be expressed as:

λ = (T,R, π). (5)

Here, for each action ai one discrete HMM is constructed using features from the con-

tributing body parts: Blegs or Barms. We obtain the set of hidden states, S, using

Gaussian Mixture Model (GMM) on the features from the detected body-parts. The

transition probability matrix, T , is learnt and action classification is done after com-

puting the output probability matrix, R, accordingly. Following sections describe the

body-part detection and HMM learning.

4.1 Body-part detection

Here, we use three body part detectors for the head, leg and arms respectively. Body

part detection is based on sliding-window technique. Specific sized rectangular bounding

boxes are used for each body part. These bounding boxes are slided over the image-frame,

taking the section of the image-frame as an input to the head, leg and arm detectors.

These inputs are then independently classified as either a respective body part or a non-

body part. In order to prevent possible false positives, those detected components are

combined into a proper geometrical configuration into another specific sized bounding
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Figure 2: Feature extraction and selection method from a training image. The training

image is divided into several blocks and then HOG features are extracted. Finally

standard deviation based feature selection method is applied to obtain feature vector for

SVM.

box as a full human. All these bounding boxes are obtained from the training samples.

Furthermore, the image itself is processed at several scales. This allows the system to

be scale invariant.

4.1.1 Features extraction and selection

In our approach (Algorithm 1), labeled training images for each body part detector

are divided into (8 × 8) blocks after applying Sobel mask on them. HOG features are

extracted from those blocks and a 6 bin histogram is computed over the angle range

(-π2 , +π
2 ). So, this gives one 6-dim feature vector for each of those (8× 8) pixel blocks.

Next, we select the best feature vector group among all of them. This feature selection

method is based on the minimization of the standard deviation (σ) of different dimensions

of those feature vectors.
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Algorithm 1 Feature extraction for body component SVM
Require: Training images of body component.

Ensure: Features for SVM.

1: for every training image do

2: Apply Sobel operator

3: Divide Sobel image into (8× 8) blocks

4: for each blocks do

5: Compute 6 bin histogram of HOG features within the range (-π2 , +π
2 )

6: Keep it in feature array.

7: end for

8: Apply feature selection algorithm over the feature array.

9: end for

10: Selected features are used to learn SVM.

Let there be N number of training image samples of size W × H, divided into n

number of (8× 8) blocks. For each of these (8× 8) blocks we have 6-bin HOG features

as, G = 〈g1, g2, . . . , g6〉. We define the standard deviation, σij , of ith block and jth bin

of HOG feature as:

σij =
(

1
N

) N∑
t=1

(g(t)
ij − µij)

2
(6)

where i = 1, 2,. . . , n; j = 1, 2,. . . , 6; t = 1, 2, . . . , N ; g(t)
ij is defined as jth bin HOG

feature of ith block of tth training image and µij is defined as the mean of jth gradient

of ith block over all the training images. The values of σij , in Equation 6, are sorted

and those 6dim feature vector packets are taken for which the σij is smaller than a

predefined threshold. In our case we ran the experiment several times to obtain this

threshold empirically. These selected features are used to train SVMs for the body part

detectors. Figure 2 shows the feature extraction technique.
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4.1.2 Geometric constraints on body-part detection

The obtained outcome of those component detectors are combined based on the geo-

metric constraint of full human body (Algorithm 2) to avoid the false positives obtained

from the part detectors. We define the detected body-part component bounding boxes

as, Head Bounding Box (RH), Leg Bounding Box (RL) and Arm Bounding Box (RA)

obtained from body-part detectors and the full human bounding box (RF ).

Algorithm 2 Geometric constraints on body-part detection
Require: Detected body-part bounding boxes: RH , RL and RA;

Width and height of full human bounding box: WRF
and HRF

.

Ensure: Full human bounding box: RF , if geometric constraints are satisfied;

NULL, otherwise.

1: (XCH
, YCH

)← CENTROID(RH).

2: (XCL
, YCL

)← CENTROID(RL).

3: if (XCH
− WRH

2 ) < XCL
< (XCH

+
WRH

2 ) then

4: if YCL
<

HRF
2 then

5: Obtain RF using {(XCH
− WRF

2 ), (YCH
+

HRH
2 ), WF , HF }.

6: (XCF
, YCF

)← CENTROID(RF ).

7: (XCA
, YCA

)← CENTROID(RA).

8: if (XCF
− WRF

2 ) < XCA
< (XCF

+
WRF

2 ) then

9: if YCH
> YCA

> YCF
then

10: Return(RF ).

11: end if

12: end if

13: end if

14: else

15: Return(NULL).

16: end if

Removal of false positives are depicted in Figure 3. When the detectors are applied
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Figure 3: Removal of false positives using geometric constraints of different component

detectors. (a) original image (b) detection of head and legs with overlapping bounding

boxes (c) after getting single detection window for head and leg including false positives

(d) detection of head and leg after removal of false positives using geometric constraint.

in the image there are usually many overlapping detected windows for a particular body

component. We obtain a single bounding box from those overlapping detected windows

in the following way. If two bounding boxes share more than 70% overlapping area

they are merged to obtain one single box. In this way overlapping detection windows

are converted into a single one. After that, the above geometric constraint is applied

to remove possible false positives and we obtain an ensemble of body-part detectors

resulting in a full human detection.

4.2 Construction of action HMMs

For learning an HMM for a particular action, several sequences of frames are chosen and

every such sequence is called action-cycle/cycle for that action. The frames that define

one cycle depends on the training sequences and the action itself. For example, the

number of frames in an action cycle varies when it is performed in a circular path. Let
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Figure 4: Training dataset for each body-part detectors. It shows training samples for

each sub-classifier.

there be M frames inside one action cycle and in each of these frames the body parts are

detected using component detectors. Let assume that in the kth frame we detect body

part bounding boxes where there are n best 6dim feature vectors from the Section: 4.1.1

as {Gk1, Gk2, ..., Gkn} where each Gki =
〈
gi1, g

i
2, . . . , g

i
6

〉k. Then we compute mean over

all these Gki ’s to get the features from the kth frame. So, we have 〈µ1, µ2, . . . , µM 〉 as a

feature to construct the HMM where each of these µi’s can be expressed as:

µi =
(

1
M

) M∑
i=1

〈
gi1, g

i
2, . . . , g

i
6

〉
. (7)

The significance of taking the mean is to get the general orientation of the body

part which in turn signifies one pose or a series of similar poses in an action. We fit a

Gaussian Mixture Model (GMM) using Expectation Maximization (EM) on these mean

features to obtain key-pose alphabets for a particular action. These key-poses are the

centre of each cluster obtained from the GMM.

Once we obtain these key-pose alphabets, we assign every detected body pose in the

frames of each of the action cycles using the nearest-neighbour approach to get a sequence

of HMM states for them. These state sequences are used to learn the parameters of the

HMM in Equation 5. In this way, we obtain the model to compute probability value in

Equation 3.
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Figure 5: Results of head, arm and leg detection as a validation process. Here detection

of profile head and leg is shown. Arm detections are shown where both arms are visible

and one is occluded.

For an unknown action, the detected body poses in all frames are mapped into the

state sequences in the similar way, but without dividing them into cycles, since in such

cases the cycle information is not known. P (Ot|st = s), the probability of an observation

sequence Ot given the state s at time t, is computed using both Forward and Baum-

Welch (Ghahramani 2002, Rabiner 1989) algorithms for every action class HMM. The

action class that gives the maximum of these probability values (Equation 4), is the class

label of that unknown class.

5 Experiments

We use three publicly available datasets for our experiments on body-part detection and

action recognition.

HumanEva dataset1: This dataset is introduced in (Sigal & Black 2006). We use

this to create our human body-part component dataset. HumanEva dataset contains

7 calibrated video sequences (4 grayscale and 3 colour) that are synchronized with 3D

body poses obtained from a motion capture system. The dataset contains 4 subjects

performing 6 common actions (e.g. walking, jogging and gesturing etc.).

KTH dataset2: This dataset is the most common dataset for the action recognition
1http://vision.cs.brown.edu/humaneva/
2http://www.nada.kth.se/cvap/actions/
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introduced in (Schuldt, et al. 2004). It covers 25 subjects and four different recording

conditions of the videos. There are six actions in this dataset: walking, running, jogging,

boxing, clapping and waving. The resolution, (120×160), of this dataset is quite low.

HERMES indoor dataset3: This dataset is described in (González, et al. 2009).

In this HERMES sequence (2003 frames @ 15 fps, 1392 × 1040 pixels) there are three

people in a room. They act in a discussion sequence sitting around a table, where bags

are carried, left and picked from the floor, and bottles are carried, left and picked from

the vending machine and from the table. In this discussion sequence several agents are

involved in different simultaneous grouping, grouped and splitting events, while they are

partially or completely occluded.

5.1 Training of the body part detectors

Our system uses four head detectors, two leg detectors and four arm detectors. The

four head detectors correspond to view angle ranges (π4 , 3π
4 ), (3π

4 , 5π
4 ), (5π

4 , 7π
4 ) and

(7π
4 , π4 ). We chose this division so that the consecutive ranges have smooth transition of

head poses. For arms, there are four classifiers corresponding to different arm positions,

grouped in the same angular views of the head. Detecting arms is a difficult task since

arms have more degrees of freedom compared to the other body parts. For each action

we use four major arm poses and considering the pose symmetry the detection of other

pose variation is achieved. To detect the legs, two sub-classifiers have been added: one

representing front(rear) view and the other one for profile views of the legs.

Figure 4 shows some training samples from our body-part dataset. In our method

for head, leg and arms detection the bounding box sizes are fixed to (72×48), (184×108)

and (124×64) pixels respectively. A (264×124) pixel bounding box is applied for full

human. Since the test image is zoomed to various sizes, and in each zoomed image

the components of those sizes are searched, the fixed component sizes do not affect

scale invariance of human detection. To train each component detector, 10, 000 true

positives and 20, 000 false positives selected from the HumanEva dataset are used. The
3http://iselab.cvc.uab.es/indoor-database
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Figure 6: ROC curves for different body part detectors on various datasets. The false

alarm rate is the number of false positive detections per window inspected.

sizes of different body-part component bounding boxes are determined after learning the

statistics of height and width of each component from all the sequences of HumanEva

dataset. A tolerance of 10 pixels is also used along the height and width of the each

bounding box.

5.2 Performance Evaluation of Body-part Detection

We performed extensive experiments and quantitative evaluation of the proposed ap-

proach of body part detection. We validate our part detector using HumanEva dataset.

For a particular body-part detector we usually obtain different detection scores from the
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Figure 7: Performance of body part detectors on the KTH dataset. Detection of head,

arms and leg shown for profile poses.

sub-classifiers that the detector is composed of. We chose the detection result based on

the best detection score among themselves. Figure 5 shows the results of the compo-

nent detectors in HumanEva dataset. These detections are the strong examples of the

view invariant detection since in the HumanEva dataset the agents perform actions in a

circular path and our component detector show robust performance in detecting them.

To test the performance of body part detectors, KTH Dataset (Schuldt et al. 2004) and

HERMES indoor sequence dataset (González et al. 2009) are used.

The Receiver Operating Characteristic (ROC) curves are shown in the Figure 6

for three component detectors: head, legs and arms of different datasets and also for

the detection of full human. These ROC curves are generated considering the overall

performance of all the sub-classifiers of each group of the three classifiers. ROC analysis

reveals that head detection and leg detection are quite accurate. Although there are

false positives, but the geometric constraint eliminates them. For the arms, however,

the detection rate is not very high since arm pose varies dramatically while performing

actions. In the HumanEva and Hermes indoor datasets we obtain high detection rates

for full human compared to the KTH dataset.

In the KTH dataset, there are several image sequences where it is impossible to

detect arms due to different clothes than the other two datasets. In such cases we are

able to detect head and legs, and when they are in proper geometrical arrangement, the

full human bounding box is constructed. There are some sequences where only legs are
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detected due to low resolution. Figure 7 shows some examples of human detection on

the KTH dataset. In those images the detected bounding boxes are found at different

scales and they are drawn after rescaling them to 1:1 scale. For low resolution image

sequences much information has been lost due to scaling and the Sobel mask hardly

found important edges from the particular body parts. Our system works well in high

resolution datasets like, the HumanEva (resolution 644× 484) and the HERMES indoor

sequences (resolution 1392×1040). It gives an average 97% recognition rate for walking,

jogging and boxing actions. However, on low resolution datasets like the KTH (resolution

160× 120) we achieve lower performance on the actions like jogging and hand clapping.

In the KTH dataset there are many cases where the human is visible at the original

resolution but when it is zoomed to 640× 480 to detect the body-parts, the objects are

blurred and detection suffers.

Table 1: Comparison of mean classification accuracy on the KTH dataset.

(Ke et al. 2005) 62.9%

(Wong & Cipolla 2007) 71.16%

(Schuldt et al. 2004) 71.72%

Our Approach 79.2%

(Dollár et al. 2005) 81.17%

(Niebles et al. 2008) 81.5%

5.3 Action Recognition

We train the walking, jogging and boxing HMMs on the HumanEva dataset and tested

on KTH dataset. But for the actions running, boxing, hand waving and hand clapping

we use KTH dataset for both training and testing. In these cases we take random

sample of 50% of the video sequences as training and the rest as test. Table 1 shows a

comparison of our recognition rate with other methods. The average action recognition

rate obtained from our method is quite promising but fails to surpass (Dollár et al. 2005)

and (Niebles et al. 2008). But, in both of these cases the training and test are done on
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the KTH dataset. We, instead, use HumanEva as a training dataset for the actions,

walking, boxing and jogging and test on the KTH dataset.

Table 2 shows the confusion matrix of our approach on the KTH dataset. In the

confusion matrix we can see that our approach, clearly, can able to distinguish the leg

and arm related actions. We obtain 100% recognition rate for walking and boxing actions

which is quite impressive. But the jogging and hand clapping have the poor recognition

rate. For jogging, the major confusion occurs with walking (40%) and 23.1% running

actions get confused as jogging. In the case of hand clapping we get the confusions with

other two actions, the boxing and hand waving. These confusions occur due to the low

resolution of the KTH dataset which affects the performance of the body-part detectors.

Table 2: Confusion matrix of action recognition using our component-wise HMM ap-

proach. KTH dataset are used.

Walk Jog Run Box Wave Clap

Walk 100.0 0.0 0.0 0.0 0.0 0.0

Jog 40.0 60.0 0.0 0.0 0.0 0.0

Run 0.0 23.1 76.9 0.0 0.0 0.0

Box 0.0 0.0 0.0 100.0 0.0 0.0

Wave 0.0 0.0 0.0 20.0 73.4 6.6

Clap 0.0 0.0 0.0 13.5 19.8 66.7

6 Discussion and Conclusion

This work presents a novel approach for recognizing actions based on a probabilistic op-

timization model of body limbs. It also includes a view-point invariant human detection

is achieved using example-based body-part detectors.

Stochastic changes of body components are modelled using HMM. This method is

also able to distinguish very similar actions like walking, jogging and running (considering

features from legs); boxing, hand waving and hand clapping (considering features from
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hands). The leg movements, sometimes, are very similar in the actions like jogging and

running. Also, in some cases there are problems of resolution and contrast which makes

it is difficult to distinguish those actions. Actions, involving hand motion also suffer

from similar problems, some part of hand waving action look similar to hand clapping,

which in tern causes ambiguity.

We observe that there are major confusions occurred in actions jogging and clapping.

In the KTH dataset some sequences of jogging action resemblance with walking and

running actions. Moreover, other state-of-the the art methods also suffer in the same

way. The confusion between clapping and waving could be because of the arm detectors

are difficult to design for every possible degree of freedom specially in those two actions

there are a variety of arm pose changes. On the hand, arm detectors perform well

for boxing since in this case the pose changes do not vary a lot. The advantage of

our approach is two fold; first, the body part detection is robust except for resolution

limited images. Second, the HMM-based action model is capable of recognizing actions

even when the body part detectors fail on some frames of an action sequence.

The performance can be improved in human detection by adding more training sam-

ples and introducing more angular views. There is no good dataset for different body-

part components, so building a component dataset is an important task. For action

recognition, higher order HMM can be applied. Information of other body parts which

have minor contribution in the action like, arms for the walking can be included in order

to minimize the misclassification rate.
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