toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (up) Alberto Hidalgo; Ferran Poveda; Enric Marti;Debora Gil;Albert Andaluz; Francesc Carreras; Manuel Ballester edit   pdf
url  doi
openurl 
  Title Evidence of continuous helical structure of the cardiac ventricular anatomy assessed by diffusion tensor imaging magnetic resonance multiresolution tractography Type Journal Article
  Year 2012 Publication European Radiology Abbreviated Journal ECR  
  Volume 3 Issue 1 Pages 361-362  
  Keywords  
  Abstract Deep understanding of myocardial structure linking morphology and func- tion of the heart would unravel crucial knowledge for medical and surgical clinical procedures and studies. Diffusion tensor MRI provides a discrete measurement of the 3D arrangement of myocardial fibres by the observation of local anisotropic
diffusion of water molecules in biological tissues. In this work, we present a multi- scale visualisation technique based on DT-MRI streamlining capable of uncovering additional properties of the architectural organisation of the heart. Methods and Materials: We selected the John Hopkins University (JHU) Canine Heart Dataset, where the long axis cardiac plane is aligned with the scanner’s Z- axis. Their equipment included a 4-element passed array coil emitting a 1.5 T. For DTI acquisition, a 3D-FSE sequence is apply. We used 200 seeds for full-scale tractography, while we applied a MIP mapping technique for simplified tractographic reconstruction. In this case, we reduced each DTI 3D volume dimensions by order- two magnitude before streamlining.
Our simplified tractographic reconstruction method keeps the main geometric features of fibres, allowing for an easier identification of their global morphological disposition, including the ventricular basal ring. Moreover, we noticed a clearly visible helical disposition of the myocardial fibres, in line with the helical myocardial band ventricular structure described by Torrent-Guasp. Finally, our simplified visualisation with single tracts identifies the main segments of the helical ventricular architecture.
DT-MRI makes possible the identification of a continuous helical architecture of the myocardial fibres, which validates Torrent-Guasp’s helical myocardial band ventricular anatomical model.
 
  Address Viena, Austria  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1869-4101 ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ HPM2012 Serial 1858  
Permanent link to this record
 

 
Author (up) Antoni Rosell; Sonia Baeza; S. Garcia-Reina; JL. Mate; Ignasi Guasch; I. Nogueira; I. Garcia-Olive; Guillermo Torres; Carles Sanchez; Debora Gil edit  url
openurl 
  Title EP01.05-001 Radiomics to Increase the Effectiveness of Lung Cancer Screening Programs. Radiolung Preliminary Results Type Journal Article
  Year 2022 Publication Journal of Thoracic Oncology Abbreviated Journal JTO  
  Volume 17 Issue 9 Pages S182  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ RBG2022b Serial 3834  
Permanent link to this record
 

 
Author (up) Antoni Rosell; Sonia Baeza; S. Garcia-Reina; JL. Mate; Ignasi Guasch; I. Nogueira; I. Garcia-Olive; Guillermo Torres; Carles Sanchez; Debora Gil edit  openurl
  Title Radiomics to increase the effectiveness of lung cancer screening programs. Radiolung preliminary results. Type Journal Article
  Year 2022 Publication European Respiratory Journal Abbreviated Journal ERJ  
  Volume 60 Issue 66 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ RBG2022c Serial 3835  
Permanent link to this record
 

 
Author (up) Aura Hernandez-Sabate; Debora Gil; Jaume Garcia; Enric Marti edit   pdf
doi  openurl
  Title Image-based Cardiac Phase Retrieval in Intravascular Ultrasound Sequences Type Journal Article
  Year 2011 Publication IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control Abbreviated Journal T-UFFC  
  Volume 58 Issue 1 Pages 60-72  
  Keywords 3-D exploring; ECG; band-pass filter; cardiac motion; cardiac phase retrieval; coronary arteries; electrocardiogram signal; image intensity local mean evolution; image-based cardiac phase retrieval; in vivo pullbacks acquisition; intravascular ultrasound sequences; longitudinal motion; signal extrema; time 36 ms; band-pass filters; biomedical ultrasonics; cardiovascular system; electrocardiography; image motion analysis; image retrieval; image sequences; medical image processing; ultrasonic imaging  
  Abstract Longitudinal motion during in vivo pullbacks acquisition of intravascular ultrasound (IVUS) sequences is a major artifact for 3-D exploring of coronary arteries. Most current techniques are based on the electrocardiogram (ECG) signal to obtain a gated pullback without longitudinal motion by using specific hardware or the ECG signal itself. We present an image-based approach for cardiac phase retrieval from coronary IVUS sequences without an ECG signal. A signal reflecting cardiac motion is computed by exploring the image intensity local mean evolution. The signal is filtered by a band-pass filter centered at the main cardiac frequency. Phase is retrieved by computing signal extrema. The average frame processing time using our setup is 36 ms. Comparison to manually sampled sequences encourages a deeper study comparing them to ECG signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0885-3010 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS Approved no  
  Call Number IAM @ iam @ HGG2011 Serial 1546  
Permanent link to this record
 

 
Author (up) Aura Hernandez-Sabate; Debora Gil;Eduard Fernandez-Nofrerias;Petia Radeva; Enric Marti edit   pdf
doi  openurl
  Title Approaching Artery Rigid Dynamics in IVUS Type Journal Article
  Year 2009 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI  
  Volume 28 Issue 11 Pages 1670-1680  
  Keywords Fourier analysis; intravascular ultrasound (IVUS) dynamics; longitudinal motion; quality measures; tissue deformation.  
  Abstract Tissue biomechanical properties (like strain and stress) are playing an increasing role in diagnosis and long-term treatment of intravascular coronary diseases. Their assessment strongly relies on estimation of vessel wall deformation. Since intravascular ultrasound (IVUS) sequences allow visualizing vessel morphology and reflect its dynamics, this technique represents a useful tool for evaluation of tissue mechanical properties. Image misalignment introduced by vessel-catheter motion is a major artifact for a proper tracking of tissue deformation. In this work, we focus on compensating and assessing IVUS rigid in-plane motion due to heart beating. Motion parameters are computed by considering both the vessel geometry and its appearance in the image. Continuum mechanics laws serve to introduce a novel score measuring motion reduction in in vivo sequences. Synthetic experiments validate the proposed score as measure of motion parameters accuracy; whereas results in in vivo pullbacks show the reliability of the presented methodologies in clinical cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0278-0062 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; MILAB Approved no  
  Call Number IAM @ iam @ HGF2009 Serial 1545  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: