toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Mariella Dimiccoli; Jean-Pascal Jacob; Lionel Moisan edit   pdf
url  openurl
  Title Particle detection and tracking in fluorescence time-lapse imaging: a contrario approach Type Journal Article
  Year 2016 Publication Journal of Machine Vision and Applications Abbreviated Journal MVAP  
  Volume 27 Issue Pages 511-527  
  Keywords particle detection; particle tracking; a-contrario approach; time-lapse fluorescence imaging  
  Abstract In this work, we propose a probabilistic approach for the detection and the
tracking of particles on biological images. In presence of very noised and poor
quality data, particles and trajectories can be characterized by an a-contrario
model, that estimates the probability of observing the structures of interest
in random data. This approach, first introduced in the modeling of human visual
perception and then successfully applied in many image processing tasks, leads
to algorithms that do not require a previous learning stage, nor a tedious
parameter tuning and are very robust to noise. Comparative evaluations against
a well established baseline show that the proposed approach outperforms the
state of the art.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area (up) Expedition Conference  
  Notes MILAB; Approved no  
  Call Number Admin @ si @ DJM2016 Serial 2735  
Permanent link to this record
 

 
Author Maedeh Aghaei; Mariella Dimiccoli; Petia Radeva edit   pdf
doi  openurl
  Title Multi-face tracking by extended bag-of-tracklets in egocentric photo-streams Type Journal Article
  Year 2016 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 149 Issue Pages 146-156  
  Keywords  
  Abstract Wearable cameras offer a hands-free way to record egocentric images of daily experiences, where social events are of special interest. The first step towards detection of social events is to track the appearance of multiple persons involved in them. In this paper, we propose a novel method to find correspondences of multiple faces in low temporal resolution egocentric videos acquired through a wearable camera. This kind of photo-stream imposes additional challenges to the multi-tracking problem with respect to conventional videos. Due to the free motion of the camera and to its low temporal resolution, abrupt changes in the field of view, in illumination condition and in the target location are highly frequent. To overcome such difficulties, we propose a multi-face tracking method that generates a set of tracklets through finding correspondences along the whole sequence for each detected face and takes advantage of the tracklets redundancy to deal with unreliable ones. Similar tracklets are grouped into the so called extended bag-of-tracklets (eBoT), which is aimed to correspond to a specific person. Finally, a prototype tracklet is extracted for each eBoT, where the occurred occlusions are estimated by relying on a new measure of confidence. We validated our approach over an extensive dataset of egocentric photo-streams and compared it to state of the art methods, demonstrating its effectiveness and robustness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area (up) Expedition Conference  
  Notes MILAB; Approved no  
  Call Number Admin @ si @ ADR2016b Serial 2742  
Permanent link to this record
 

 
Author M. Oliver; G. Haro; Mariella Dimiccoli; B. Mazin; C. Ballester edit   pdf
doi  openurl
  Title A Computational Model for Amodal Completion Type Journal Article
  Year 2016 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 56 Issue 3 Pages 511–534  
  Keywords Perception; visual completion; disocclusion; Bayesian model;relatability; Euler elastica  
  Abstract This paper presents a computational model to recover the most likely interpretation
of the 3D scene structure from a planar image, where some objects may occlude others. The estimated scene interpretation is obtained by integrating some global and local cues and provides both the complete disoccluded objects that form the scene and their ordering according to depth.
Our method first computes several distal scenes which are compatible with the proximal planar image. To compute these different hypothesized scenes, we propose a perceptually inspired object disocclusion method, which works by minimizing the Euler's elastica as well as by incorporating the relatability of partially occluded contours and the convexity of the disoccluded objects. Then, to estimate the preferred scene we rely on a Bayesian model and define probabilities taking into account the global complexity of the objects in the hypothesized scenes as well as the effort of bringing these objects in their relative position in the planar image, which is also measured by an Euler's elastica-based quantity. The model is illustrated with numerical experiments on, both, synthetic and real images showing the ability of our model to reconstruct the occluded objects and the preferred perceptual order among them. We also present results on images of the Berkeley dataset with provided figure-ground ground-truth labeling.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area (up) Expedition Conference  
  Notes MILAB; 601.235 Approved no  
  Call Number Admin @ si @ OHD2016b Serial 2745  
Permanent link to this record
 

 
Author Pedro Martins; Paulo Carvalho; Carlo Gatta edit   pdf
doi  openurl
  Title On the completeness of feature-driven maximally stable extremal regions Type Journal Article
  Year 2016 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 74 Issue Pages 9-16  
  Keywords Local features; Completeness; Maximally Stable Extremal Regions  
  Abstract By definition, local image features provide a compact representation of the image in which most of the image information is preserved. This capability offered by local features has been overlooked, despite being relevant in many application scenarios. In this paper, we analyze and discuss the performance of feature-driven Maximally Stable Extremal Regions (MSER) in terms of the coverage of informative image parts (completeness). This type of features results from an MSER extraction on saliency maps in which features related to objects boundaries or even symmetry axes are highlighted. These maps are intended to be suitable domains for MSER detection, allowing this detector to provide a better coverage of informative image parts. Our experimental results, which were based on a large-scale evaluation, show that feature-driven MSER have relatively high completeness values and provide more complete sets than a traditional MSER detection even when sets of similar cardinality are considered.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area (up) Expedition Conference  
  Notes LAMP;MILAB; Approved no  
  Call Number Admin @ si @ MCG2016 Serial 2748  
Permanent link to this record
 

 
Author Egils Avots; M. Daneshmanda; Andres Traumann; Sergio Escalera; G. Anbarjafaria edit   pdf
doi  openurl
  Title Automatic garment retexturing based on infrared information Type Journal Article
  Year 2016 Publication Computers & Graphics Abbreviated Journal CG  
  Volume 59 Issue Pages 28-38  
  Keywords Garment Retexturing; Texture Mapping; Infrared Images; RGB-D Acquisition Devices; Shading  
  Abstract This paper introduces a new automatic technique for garment retexturing using a single static image along with the depth and infrared information obtained using the Microsoft Kinect II as the RGB-D acquisition device. First, the garment is segmented out from the image using either the Breadth-First Search algorithm or the semi-automatic procedure provided by the GrabCut method. Then texture domain coordinates are computed for each pixel belonging to the garment using normalised 3D information. Afterwards, shading is applied to the new colours from the texture image. As the main contribution of the proposed method, the latter information is obtained based on extracting a linear map transforming the colour present on the infrared image to that of the RGB colour channels. One of the most important impacts of this strategy is that the resulting retexturing algorithm is colour-, pattern- and lighting-invariant. The experimental results show that it can be used to produce realistic representations, which is substantiated through implementing it under various experimentation scenarios, involving varying lighting intensities and directions. Successful results are accomplished also on video sequences, as well as on images of subjects taking different poses. Based on the Mean Opinion Score analysis conducted on many randomly chosen users, it has been shown to produce more realistic-looking results compared to the existing state-of-the-art methods suggested in the literature. From a wide perspective, the proposed method can be used for retexturing all sorts of segmented surfaces, although the focus of this study is on garment retexturing, and the investigation of the configurations is steered accordingly, since the experiments target an application in the context of virtual fitting rooms.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area (up) Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ ADT2016 Serial 2759  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: