toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Yi Xiao; Felipe Codevilla; Diego Porres; Antonio Lopez edit  url
openurl 
  Title Scaling Vision-Based End-to-End Autonomous Driving with Multi-View Attention Learning Type Conference Article
  Year 2023 Publication International Conference on Intelligent Robots and Systems Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract On end-to-end driving, human driving demonstrations are used to train perception-based driving models by imitation learning. This process is supervised on vehicle signals (e.g., steering angle, acceleration) but does not require extra costly supervision (human labeling of sensor data). As a representative of such vision-based end-to-end driving models, CILRS is commonly used as a baseline to compare with new driving models. So far, some latest models achieve better performance than CILRS by using expensive sensor suites and/or by using large amounts of human-labeled data for training. Given the difference in performance, one may think that it is not worth pursuing vision-based pure end-to-end driving. However, we argue that this approach still has great value and potential considering cost and maintenance. In this paper, we present CIL++, which improves on CILRS by both processing higher-resolution images using a human-inspired HFOV as an inductive bias and incorporating a proper attention mechanism. CIL++ achieves competitive performance compared to models which are more costly to develop. We propose to replace CILRS with CIL++ as a strong vision-based pure end-to-end driving baseline supervised by only vehicle signals and trained by conditional imitation learning.  
  Address Detroit; USA; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IROS  
  Notes ADAS Approved no  
  Call Number Admin @ si @ XCP2023 Serial 3930  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: