toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Michael Teutsch; Angel Sappa; Riad I. Hammoud edit  doi
isbn  openurl
  Title Cross-Spectral Image Processing Type Book Chapter
  Year 2022 Publication Computer Vision in the Infrared Spectrum. Synthesis Lectures on Computer Vision Abbreviated Journal  
  Volume Issue Pages 23-34  
  Keywords  
  Abstract Although this book is on IR computer vision and its main focus lies on IR image and video processing and analysis, a special attention is dedicated to cross-spectral image processing due to the increasing number of publications and applications in this domain. In these cross-spectral frameworks, IR information is used together with information from other spectral bands to tackle some specific problems by developing more robust solutions. Tasks considered for cross-spectral processing are for instance dehazing, segmentation, vegetation index estimation, or face recognition. This increasing number of applications is motivated by cross- and multi-spectral camera setups available already on the market like for example smartphones, remote sensing multispectral cameras, or multi-spectral cameras for automotive systems or drones. In this chapter, different cross-spectral image processing techniques will be reviewed together with possible applications. Initially, image registration approaches for the cross-spectral case are reviewed: the registration stage is the first image processing task, which is needed to align images acquired by different sensors within the same reference coordinate system. Then, recent cross-spectral image colorization approaches, which are intended to colorize infrared images for different applications are presented. Finally, the cross-spectral image enhancement problem is tackled by including guided super resolution techniques, image dehazing approaches, cross-spectral filtering and edge detection. Figure 3.1 illustrates cross-spectral image processing stages as well as their possible connections. Table 3.1 presents some of the available public cross-spectral datasets generally used as reference data to evaluate cross-spectral image registration, colorization, enhancement, or exploitation results.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title SLCV  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-031-00698-2 Medium  
  Area Expedition Conference  
  Notes MSIAU; MACO Approved no  
  Call Number Admin @ si @ TSH2022b Serial 3805  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: