|
Abstract |
OBJECTIVES:
The aim of the study was to address the need for quantifying the global cancer time evolution magnitude from a pair of time-consecutive positron emission tomography-computed tomography (PET-CT) scans. In particular, we focus on the computation of indicators using image-processing techniques that seek to model non-Hodgkin's lymphoma (NHL) progression or response severity.
MATERIALS AND METHODS:
A total of 89 pairs of time-consecutive PET-CT scans from NHL patients were stored in a nuclear medicine station for subsequent analysis. These were classified by a consensus of nuclear medicine physicians into progressions, partial responses, mixed responses, complete responses, and relapses. The cases of each group were ordered by magnitude following visual analysis. Thereafter, a set of quantitative indicators designed to model the cancer evolution magnitude within each group were computed using semiautomatic and automatic image-processing techniques. Performance evaluation of the proposed indicators was measured by a correlation analysis with the expert-based visual analysis.
RESULTS:
The set of proposed indicators achieved Pearson's correlation results in each group with respect to the expert-based visual analysis: 80.2% in progressions, 77.1% in partial response, 68.3% in mixed response, 88.5% in complete response, and 100% in relapse. In the progression and mixed response groups, the proposed indicators outperformed the common indicators used in clinical practice [changes in metabolic tumor volume, mean, maximum, peak standardized uptake value (SUV mean, SUV max, SUV peak), and total lesion glycolysis] by more than 40%.
CONCLUSION:
Computing global indicators of NHL response using PET-CT imaging techniques offers a strong correlation with the associated expert-based visual analysis, motivating the future incorporation of such quantitative and highly observer-independent indicators in oncological decision making or treatment response evaluation scenarios. |
|