|
Abstract |
Human-robot interaction is a hot topic nowadays in the social robotics community. One crucial aspect is represented by the affective communication which comes encoded through the facial expressions. In this paper, we propose a novel approach for facial expression recognition, which exploits an efficient and adaptive graph-based label propagation (semi-supervised mode) in a multi-observation framework. The facial features are extracted using an appearance-based 3D face tracker, view- and texture independent. Our method has been extensively tested on the CMU dataset, and has been conveniently compared with other methods for graph construction. With the proposed approach, we developed an application for an AIBO robot, in which it mirrors the recognized facial
expression. |
|