2012 |
|
Laura Igual, Joan Carles Soliva, Sergio Escalera, Roger Gimeno, Oscar Vilarroya, & Petia Radeva. (2012). Automatic Brain Caudate Nuclei Segmentation and Classification in Diagnostic of Attention-Deficit/Hyperactivity Disorder. CMIG - Computerized Medical Imaging and Graphics, 36(8), 591–600.
Abstract: We present a fully automatic diagnostic imaging test for Attention-Deficit/Hyperactivity Disorder diagnosis assistance based on previously found evidences of caudate nucleus volumetric abnormalities. The proposed method consists of different steps: a new automatic method for external and internal segmentation of caudate based on Machine Learning methodologies; the definition of a set of new volume relation features, 3D Dissociated Dipoles, used for caudate representation and classification. We separately validate the contributions using real data from a pediatric population and show precise internal caudate segmentation and discrimination power of the diagnostic test, showing significant performance improvements in comparison to other state-of-the-art methods.
Keywords: Automatic caudate segmentation; Attention-Deficit/Hyperactivity Disorder; Diagnostic test; Machine learning; Decision stumps; Dissociated dipoles
|
|
|
Marina Alberti, Simone Balocco, Carlo Gatta, Francesco Ciompi, Oriol Pujol, Joana Silva, et al. (2012). Automatic Bifurcation Detection in Coronary IVUS Sequences. TBME - IEEE Transactions on Biomedical Engineering, 59(4), 1022–2031.
Abstract: In this paper, we present a fully automatic method which identifies every bifurcation in an intravascular ultrasound (IVUS) sequence, the corresponding frames, the angular orientation with respect to the IVUS acquisition, and the extension. This goal is reached using a two-level classification scheme: first, a classifier is applied to a set of textural features extracted from each image of a sequence. A comparison among three state-of-the-art discriminative classifiers (AdaBoost, random forest, and support vector machine) is performed to identify the most suitable method for the branching detection task. Second, the results are improved by exploiting contextual information using a multiscale stacked sequential learning scheme. The results are then successively refined using a-priori information about branching dimensions and geometry. The proposed approach provides a robust tool for the quick review of pullback sequences, facilitating the evaluation of the lesion at bifurcation sites. The proposed method reaches an F-Measure score of 86.35%, while the F-Measure scores for inter- and intraobserver variability are 71.63% and 76.18%, respectively. The obtained results are positive. Especially, considering the branching detection task is very challenging, due to high variability in bifurcation dimensions and appearance.
|
|
|
Pierluigi Casale, Oriol Pujol, & Petia Radeva. (2012). Personalization and User Verification in Wearable Systems using Biometric Walking Patterns. PUC - Personal and Ubiquitous Computing, 16(5), 563–580.
Abstract: In this article, a novel technique for user’s authentication and verification using gait as a biometric unobtrusive pattern is proposed. The method is based on a two stages pipeline. First, a general activity recognition classifier is personalized for an specific user using a small sample of her/his walking pattern. As a result, the system is much more selective with respect to the new walking pattern. A second stage verifies whether the user is an authorized one or not. This stage is defined as a one-class classification problem. In order to solve this problem, a four-layer architecture is built around the geometric concept of convex hull. This architecture allows to improve robustness to outliers, modeling non-convex shapes, and to take into account temporal coherence information. Two different scenarios are proposed as validation with two different wearable systems. First, a custom high-performance wearable system is built and used in a free environment. A second dataset is acquired from an Android-based commercial device in a ‘wild’ scenario with rough terrains, adversarial conditions, crowded places and obstacles. Results on both systems and datasets are very promising, reducing the verification error rates by an order of magnitude with respect to the state-of-the-art technologies.
|
|
|
Sergio Escalera, Xavier Baro, Jordi Vitria, Petia Radeva, & Bogdan Raducanu. (2012). Social Network Extraction and Analysis Based on Multimodal Dyadic Interaction. SENS - Sensors, 12(2), 1702–1719.
Abstract: IF=1.77 (2010)
Social interactions are a very important component in peopleís lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Timesí Blogging Heads opinion blog.
The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The linksí weights are a measure of the ìinfluenceî a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network.
|
|
2011 |
|
Carlo Gatta, Eloi Puertas, & Oriol Pujol. (2011). Multi-Scale Stacked Sequential Learning. PR - Pattern Recognition, 44(10-11), 2414–2416.
Abstract: One of the most widely used assumptions in supervised learning is that data is independent and identically distributed. This assumption does not hold true in many real cases. Sequential learning is the discipline of machine learning that deals with dependent data such that neighboring examples exhibit some kind of relationship. In the literature, there are different approaches that try to capture and exploit this correlation, by means of different methodologies. In this paper we focus on meta-learning strategies and, in particular, the stacked sequential learning approach. The main contribution of this work is two-fold: first, we generalize the stacked sequential learning. This generalization reflects the key role of neighboring interactions modeling. Second, we propose an effective and efficient way of capturing and exploiting sequential correlations that takes into account long-range interactions by means of a multi-scale pyramidal decomposition of the predicted labels. Additionally, this new method subsumes the standard stacked sequential learning approach. We tested the proposed method on two different classification tasks: text lines classification in a FAQ data set and image classification. Results on these tasks clearly show that our approach outperforms the standard stacked sequential learning. Moreover, we show that the proposed method allows to control the trade-off between the detail and the desired range of the interactions.
Keywords: Stacked sequential learning; Multiscale; Multiresolution; Contextual classification
|
|