|
Sergio Escalera, David M.J. Tax, Oriol Pujol, Petia Radeva, & Robert P.W. Duin. (2008). Subclass Problem-Dependent Design for Error-Correcting Output Codes. IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.30(6):1041–1054.
|
|
|
Sergio Escalera, Oriol Pujol, & Petia Radeva. (2008). Detection of Complex Salient Regions. EURASIP Journal on Advances in Signal Processing, vol. 2008, article ID451389, 11 pages.
|
|
|
Oriol Rodriguez-Leor, Carlo Gatta, E. Fernandez-Nofrerias, Oriol Pujol, Neus Salvatella, C. Bosch, et al. (2008). Computationally Efficient Image-based IVUS Pullbacks Gating. European Heart Journal, ESC Supplement, Munich, 2008, p. 775.
|
|
|
Sergio Escalera, Oriol Pujol, Petia Radeva, Jordi Vitria, & Maria Teresa Anguera. (2010). Automatic Detection of Dominance and Expected Interest. EURASIPJ - EURASIP Journal on Advances in Signal Processing, , 12.
Abstract: Article ID 491819
Social Signal Processing is an emergent area of research that focuses on the analysis of social constructs. Dominance and interest are two of these social constructs. Dominance refers to the level of influence a person has in a conversation. Interest, when referred in terms of group interactions, can be defined as the degree of engagement that the members of a group collectively display during their interaction. In this paper, we argue that only using behavioral motion information, we are able to predict the interest of observers when looking at face-to-face interactions as well as the dominant people. First, we propose a simple set of movement-based features from body, face, and mouth activity in order to define a higher set of interaction indicators. The considered indicators are manually annotated by observers. Based on the opinions obtained, we define an automatic binary dominance detection problem and a multiclass interest quantification problem. Error-Correcting Output Codes framework is used to learn to rank the perceived observer's interest in face-to-face interactions meanwhile Adaboost is used to solve the dominant detection problem. The automatic system shows good correlation between the automatic categorization results and the manual ranking made by the observers in both dominance and interest detection problems.
|
|
|
Swathikiran Sudhakaran, Sergio Escalera, & Oswald Lanz. (2021). Learning to Recognize Actions on Objects in Egocentric Video with Attention Dictionaries. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, .
Abstract: We present EgoACO, a deep neural architecture for video action recognition that learns to pool action-context-object descriptors from frame level features by leveraging the verb-noun structure of action labels in egocentric video datasets. The core component of EgoACO is class activation pooling (CAP), a differentiable pooling operation that combines ideas from bilinear pooling for fine-grained recognition and from feature learning for discriminative localization. CAP uses self-attention with a dictionary of learnable weights to pool from the most relevant feature regions. Through CAP, EgoACO learns to decode object and scene context descriptors from video frame features. For temporal modeling in EgoACO, we design a recurrent version of class activation pooling termed Long Short-Term Attention (LSTA). LSTA extends convolutional gated LSTM with built-in spatial attention and a re-designed output gate. Action, object and context descriptors are fused by a multi-head prediction that accounts for the inter-dependencies between noun-verb-action structured labels in egocentric video datasets. EgoACO features built-in visual explanations, helping learning and interpretation. Results on the two largest egocentric action recognition datasets currently available, EPIC-KITCHENS and EGTEA, show that by explicitly decoding action-context-object descriptors, EgoACO achieves state-of-the-art recognition performance.
|
|