|
Frederic Sampedro, Sergio Escalera, Anna Domenech, & Ignasi Carrio. (2014). A computational framework for cancer response assessment based on oncological PET-CT scans. CBM - Computers in Biology and Medicine, 55, 92–99.
Abstract: In this work we present a comprehensive computational framework to help in the clinical assessment of cancer response from a pair of time consecutive oncological PET-CT scans. In this scenario, the design and implementation of a supervised machine learning system to predict and quantify cancer progression or response conditions by introducing a novel feature set that models the underlying clinical context is described. Performance results in 100 clinical cases (corresponding to 200 whole body PET-CT scans) in comparing expert-based visual analysis and classifier decision making show up to 70% accuracy within a completely automatic pipeline and 90% accuracy when providing the system with expert-guided PET tumor segmentation masks.
Keywords: Computer aided diagnosis; Nuclear medicine; Machine learning; Image processing; Quantitative analysis
|
|
|
Laura Igual, Joan Carles Soliva, Antonio Hernandez, Sergio Escalera, Xavier Jimenez, Oscar Vilarroya, et al. (2011). A fully-automatic caudate nucleus segmentation of brain MRI: Application in volumetric analysis of pediatric attention-deficit/hyperactivity disorder. BEO - BioMedical Engineering Online, 10(105), 1–23.
Abstract: Background
Accurate automatic segmentation of the caudate nucleus in magnetic resonance images (MRI) of the brain is of great interest in the analysis of developmental disorders. Segmentation methods based on a single atlas or on multiple atlases have been shown to suitably localize caudate structure. However, the atlas prior information may not represent the structure of interest correctly. It may therefore be useful to introduce a more flexible technique for accurate segmentations.
Method
We present Cau-dateCut: a new fully-automatic method of segmenting the caudate nucleus in MRI. CaudateCut combines an atlas-based segmentation strategy with the Graph Cut energy-minimization framework. We adapt the Graph Cut model to make it suitable for segmenting small, low-contrast structures, such as the caudate nucleus, by defining new energy function data and boundary potentials. In particular, we exploit information concerning the intensity and geometry, and we add supervised energies based on contextual brain structures. Furthermore, we reinforce boundary detection using a new multi-scale edgeness measure.
Results
We apply the novel CaudateCut method to the segmentation of the caudate nucleus to a new set of 39 pediatric attention-deficit/hyperactivity disorder (ADHD) patients and 40 control children, as well as to a public database of 18 subjects. We evaluate the quality of the segmentation using several volumetric and voxel by voxel measures. Our results show improved performance in terms of segmentation compared to state-of-the-art approaches, obtaining a mean overlap of 80.75%. Moreover, we present a quantitative volumetric analysis of caudate abnormalities in pediatric ADHD, the results of which show strong correlation with expert manual analysis.
Conclusion
CaudateCut generates segmentation results that are comparable to gold-standard segmentations and which are reliable in the analysis of differentiating neuroanatomical abnormalities between healthy controls and pediatric ADHD.
Keywords: Brain caudate nucleus; segmentation; MRI; atlas-based strategy; Graph Cut framework
|
|
|
Mohammad ali Bagheri, Qigang Gao, & Sergio Escalera. (2013). A Genetic-based Subspace Analysis Method for Improving Error-Correcting Output Coding. PR - Pattern Recognition, 46(10), 2830–2839.
Abstract: Two key factors affecting the performance of Error Correcting Output Codes (ECOC) in multiclass classification problems are the independence of binary classifiers and the problem-dependent coding design. In this paper, we propose an evolutionary algorithm-based approach to the design of an application-dependent codematrix in the ECOC framework. The central idea of this work is to design a three-dimensional codematrix, where the third dimension is the feature space of the problem domain. In order to do that, we consider the feature space in the design process of the codematrix with the aim of improving the independence and accuracy of binary classifiers. The proposed method takes advantage of some basic concepts of ensemble classification, such as diversity of classifiers, and also benefits from the evolutionary approach for optimizing the three-dimensional codematrix, taking into account the problem domain. We provide a set of experimental results using a set of benchmark datasets from the UCI Machine Learning Repository, as well as two real multiclass Computer Vision problems. Both sets of experiments are conducted using two different base learners: Neural Networks and Decision Trees. The results show that the proposed method increases the classification accuracy in comparison with the state-of-the-art ECOC coding techniques.
Keywords: Error Correcting Output Codes; Evolutionary computation; Multiclass classification; Feature subspace; Ensemble classification
|
|
|
Miguel Angel Bautista, Antonio Hernandez, Sergio Escalera, Laura Igual, Oriol Pujol, Josep Moya, et al. (2016). A Gesture Recognition System for Detecting Behavioral Patterns of ADHD. TSMCB - IEEE Transactions on System, Man and Cybernetics, Part B, 46(1), 136–147.
Abstract: We present an application of gesture recognition using an extension of Dynamic Time Warping (DTW) to recognize behavioural patterns of Attention Deficit Hyperactivity Disorder (ADHD). We propose an extension of DTW using one-class classifiers in order to be able to encode the variability of a gesture category, and thus, perform an alignment between a gesture sample and a gesture class. We model the set of gesture samples of a certain gesture category using either GMMs or an approximation of Convex Hulls. Thus, we add a theoretical contribution to classical warping path in DTW by including local modeling of intra-class gesture variability. This methodology is applied in a clinical context, detecting a group of ADHD behavioural patterns defined by experts in psychology/psychiatry, to provide support to clinicians in the diagnose procedure. The proposed methodology is tested on a novel multi-modal dataset (RGB plus Depth) of ADHD children recordings with behavioural patterns. We obtain satisfying results when compared to standard state-of-the-art approaches in the DTW context.
Keywords: Gesture Recognition; ADHD; Gaussian Mixture Models; Convex Hulls; Dynamic Time Warping; Multi-modal RGB-Depth data
|
|
|
Andre Litvin, Kamal Nasrollahi, Sergio Escalera, Cagri Ozcinar, Thomas B Moeslund, & Gholamreza Anbarjafari. (2019). A Novel Deep Network Architecture for Reconstructing RGB Facial Images from Thermal for Face Recognition. MTAP - Multimedia Tools and Applications, 78(18), 25259–25271.
Abstract: This work proposes a fully convolutional network architecture for RGB face image generation from a given input thermal face image to be applied in face recognition scenarios. The proposed method is based on the FusionNet architecture and increases robustness against overfitting using dropout after bridge connections, randomised leaky ReLUs (RReLUs), and orthogonal regularization. Furthermore, we propose to use a decoding block with resize convolution instead of transposed convolution to improve final RGB face image generation. To validate our proposed network architecture, we train a face classifier and compare its face recognition rate on the reconstructed RGB images from the proposed architecture, to those when reconstructing images with the original FusionNet, as well as when using the original RGB images. As a result, we are introducing a new architecture which leads to a more accurate network.
Keywords: Fully convolutional networks; FusionNet; Thermal imaging; Face recognition
|
|