|
M. Gomez, J. Mauri, E. Fernandez-Nofrerias, Oriol Rodriguez-Leor, Carme Julia, Oriol Pujol, et al. (2002). Diferenciacion de las estructuras del vaso coronario mediante el procesamiento de imagenes y el analisis de las diferentes texturas a partir de la ecografia intracoronaria. XXXVIII Congreso Nacional de la Sociedad Española de Cardiologia.
|
|
|
Sergio Escalera, Oriol Pujol, & Petia Radeva. (2008). Detection of Complex Salient Regions. EURASIP Journal on Advances in Signal Processing, vol. 2008, article ID451389, 11 pages.
|
|
|
Sergio Escalera, R. M. Martinez, Jordi Vitria, Petia Radeva, & Maria Teresa Anguera. (2010). Deteccion automatica de la dominancia en conversaciones diadicas. EP - Escritos de Psicologia, 3(2), 41–45.
Abstract: Dominance is referred to the level of influence that a person has in a conversation. Dominance is an important research area in social psychology, but the problem of its automatic estimation is a very recent topic in the contexts of social and wearable computing. In this paper, we focus on the dominance detection of visual cues. We estimate the correlation among observers by categorizing the dominant people in a set of face-to-face conversations. Different dominance indicators from gestural communication are defined, manually annotated, and compared to the observers' opinion. Moreover, these indicators are automatically extracted from video sequences and learnt by using binary classifiers. Results from the three analyses showed a high correlation and allows the categorization of dominant people in public discussion video sequences.
Keywords: Dominance detection; Non-verbal communication; Visual features
|
|
|
Ester Fornells, Manuel De Armas, Maria Teresa Anguera, Sergio Escalera, Marcos Antonio Catalán, & Josep Moya. (2018). Desarrollo del proyecto del Consell Comarcal del Baix Llobregat “Buen Trato a las personas mayores y aquellas en situación de fragilidad con sufrimiento emocional: Hacia un envejecimiento saludable”. Informaciones Psiquiatricas, 47–59.
|
|
|
Frederic Sampedro, Anna Domenech, Sergio Escalera, & Ignasi Carrio. (2015). Deriving global quantitative tumor response parameters from 18F-FDG PET-CT scans in patients with non-Hodgkins lymphoma. NMC - Nuclear Medicine Communications, 36(4), 328–333.
Abstract: OBJECTIVES:
The aim of the study was to address the need for quantifying the global cancer time evolution magnitude from a pair of time-consecutive positron emission tomography-computed tomography (PET-CT) scans. In particular, we focus on the computation of indicators using image-processing techniques that seek to model non-Hodgkin's lymphoma (NHL) progression or response severity.
MATERIALS AND METHODS:
A total of 89 pairs of time-consecutive PET-CT scans from NHL patients were stored in a nuclear medicine station for subsequent analysis. These were classified by a consensus of nuclear medicine physicians into progressions, partial responses, mixed responses, complete responses, and relapses. The cases of each group were ordered by magnitude following visual analysis. Thereafter, a set of quantitative indicators designed to model the cancer evolution magnitude within each group were computed using semiautomatic and automatic image-processing techniques. Performance evaluation of the proposed indicators was measured by a correlation analysis with the expert-based visual analysis.
RESULTS:
The set of proposed indicators achieved Pearson's correlation results in each group with respect to the expert-based visual analysis: 80.2% in progressions, 77.1% in partial response, 68.3% in mixed response, 88.5% in complete response, and 100% in relapse. In the progression and mixed response groups, the proposed indicators outperformed the common indicators used in clinical practice [changes in metabolic tumor volume, mean, maximum, peak standardized uptake value (SUV mean, SUV max, SUV peak), and total lesion glycolysis] by more than 40%.
CONCLUSION:
Computing global indicators of NHL response using PET-CT imaging techniques offers a strong correlation with the associated expert-based visual analysis, motivating the future incorporation of such quantitative and highly observer-independent indicators in oncological decision making or treatment response evaluation scenarios.
|
|