|
Sergio Escalera, Oriol Pujol, & Petia Radeva. (2010). Error-Correcting Output Codes Library. JMLR - Journal of Machine Learning Research, 11, 661–664.
Abstract: (Feb):661−664
In this paper, we present an open source Error-Correcting Output Codes (ECOC) library. The ECOC framework is a powerful tool to deal with multi-class categorization problems. This library contains both state-of-the-art coding (one-versus-one, one-versus-all, dense random, sparse random, DECOC, forest-ECOC, and ECOC-ONE) and decoding designs (hamming, euclidean, inverse hamming, laplacian, β-density, attenuated, loss-based, probabilistic kernel-based, and loss-weighted) with the parameters defined by the authors, as well as the option to include your own coding, decoding, and base classifier.
|
|
|
Francesco Ciompi, Oriol Pujol, Carlo Gatta, Oriol Rodriguez-Leor, J. Mauri, & Petia Radeva. (2010). Fusing in-vitro and in-vivo intravascular ultrasound data for plaque characterization. IJCI - International Journal of Cardiovascular Imaging, 26(7), 763–779.
Abstract: Accurate detection of in-vivo vulnerable plaque in coronary arteries is still an open problem. Recent studies show that it is highly related to tissue structure and composition. Intravascular Ultrasound (IVUS) is a powerful imaging technique that gives a detailed cross-sectional image of the vessel, allowing to explore arteries morphology. IVUS data validation is usually performed by comparing post-mortem (in-vitro) IVUS data and corresponding histological analysis of the tissue. The main drawback of this method is the few number of available case studies and validated data due to the complex procedure of histological analysis of the tissue. On the other hand, IVUS data from in-vivo cases is easy to obtain but it can not be histologically validated. In this work, we propose to enhance the in-vitro training data set by selectively including examples from in-vivo plaques. For this purpose, a Sequential Floating Forward Selection method is reformulated in the context of plaque characterization. The enhanced classifier performance is validated on in-vitro data set, yielding an overall accuracy of 91.59% in discriminating among fibrotic, lipidic and calcified plaques, while reducing the gap between in-vivo and in-vitro data analysis. Experimental results suggest that the obtained classifier could be properly applied on in-vivo plaque characterization and also demonstrate that the common hypothesis of assuming the difference between in-vivo and in-vitro as negligible is incorrect.
|
|
|
Simone Balocco, Carlo Gatta, Oriol Pujol, J. Mauri, & Petia Radeva. (2010). SRBF: Speckle Reducing Bilateral Filtering. UMB - Ultrasound in Medicine and Biology, 36(8), 1353–1363.
Abstract: Speckle noise negatively affects medical ultrasound image shape interpretation and boundary detection. Speckle removal filters are widely used to selectively remove speckle noise without destroying important image features to enhance object boundaries. In this article, a fully automatic bilateral filter tailored to ultrasound images is proposed. The edge preservation property is obtained by embedding noise statistics in the filter framework. Consequently, the filter is able to tackle the multiplicative behavior modulating the smoothing strength with respect to local statistics. The in silico experiments clearly showed that the speckle reducing bilateral filter (SRBF) has superior performances to most of the state of the art filtering methods. The filter is tested on 50 in vivo US images and its influence on a segmentation task is quantified. The results using SRBF filtered data sets show a superior performance to using oriented anisotropic diffusion filtered images. This improvement is due to the adaptive support of SRBF and the embedded noise statistics, yielding a more homogeneous smoothing. SRBF results in a fully automatic, fast and flexible algorithm potentially suitable in wide ranges of speckle noise sizes, for different medical applications (IVUS, B-mode, 3-D matrix array US).
|
|
|
Sergio Escalera, Oriol Pujol, & Petia Radeva. (2010). Re-coding ECOCs without retraining. PRL - Pattern Recognition Letters, 31(7), 555–562.
Abstract: A standard way to deal with multi-class categorization problems is by the combination of binary classifiers in a pairwise voting procedure. Recently, this classical approach has been formalized in the Error-Correcting Output Codes (ECOC) framework. In the ECOC framework, the one-versus-one coding demonstrates to achieve higher performance than the rest of coding designs. The binary problems that we train in the one-versus-one strategy are significantly smaller than in the rest of designs, and usually easier to be learnt, taking into account the smaller overlapping between classes. However, a high percentage of the positions coded by zero of the coding matrix, which implies a high sparseness degree, does not codify meta-class membership information. In this paper, we show that using the training data we can redefine without re-training, in a problem-dependent way, the one-versus-one coding matrix so that the new coded information helps the system to increase its generalization capability. Moreover, the new re-coding strategy is generalized to be applied over any binary code. The results over several UCI Machine Learning repository data sets and two real multi-class problems show that performance improvements can be obtained re-coding the classical one-versus-one and Sparse random designs compared to different state-of-the-art ECOC configurations.
|
|
|
David Rotger, Misael Rosales, Jaume Garcia, Oriol Pujol, J. Mauri, & Petia Radeva. (2003). Active Vessel: A New Multimedia Workstation for Intravascular Ultrasound and Angiography Fusion. Computers in Cardiology, 30, 65–68.
Abstract: AcriveVessel is a new multimedia workstation which enables the visualization, acquisition and handling of both image modalities, on- and ofline. It enables DICOM v3.0 decompression and browsing, video acquisition,repmduction and storage for IntraVascular UltraSound (IVUS) and angiograms with their corresponding ECG,automatic catheter segmentation in angiography images (using fast marching algorithm). BSpline models definition for vessel layers on IVUS images sequence and an extensively validated tool to fuse information. This approach defines the correspondence of every IVUS image with its correspondent point in the angiogram and viceversa. The 3 0 reconstruction of the NUS catheterhessel enables real distance measurements as well as threedimensional visualization showing vessel tortuosity in the space.
|
|