|
Sergio Escalera, Oriol Pujol, Petia Radeva, Jordi Vitria, & Maria Teresa Anguera. (2010). Automatic Detection of Dominance and Expected Interest. EURASIPJ - EURASIP Journal on Advances in Signal Processing, , 12.
Abstract: Article ID 491819
Social Signal Processing is an emergent area of research that focuses on the analysis of social constructs. Dominance and interest are two of these social constructs. Dominance refers to the level of influence a person has in a conversation. Interest, when referred in terms of group interactions, can be defined as the degree of engagement that the members of a group collectively display during their interaction. In this paper, we argue that only using behavioral motion information, we are able to predict the interest of observers when looking at face-to-face interactions as well as the dominant people. First, we propose a simple set of movement-based features from body, face, and mouth activity in order to define a higher set of interaction indicators. The considered indicators are manually annotated by observers. Based on the opinions obtained, we define an automatic binary dominance detection problem and a multiclass interest quantification problem. Error-Correcting Output Codes framework is used to learn to rank the perceived observer's interest in face-to-face interactions meanwhile Adaboost is used to solve the dominant detection problem. The automatic system shows good correlation between the automatic categorization results and the manual ranking made by the observers in both dominance and interest detection problems.
|
|
|
Meysam Madadi, Sergio Escalera, Jordi Gonzalez, Xavier Roca, & Felipe Lumbreras. (2015). Multi-part body segmentation based on depth maps for soft biometry analysis. PRL - Pattern Recognition Letters, 56, 14–21.
Abstract: This paper presents a novel method extracting biometric measures using depth sensors. Given a multi-part labeled training data, a new subject is aligned to the best model of the dataset, and soft biometrics such as lengths or circumference sizes of limbs and body are computed. The process is performed by training relevant pose clusters, defining a representative model, and fitting a 3D shape context descriptor within an iterative matching procedure. We show robust measures by applying orthogonal plates to body hull. We test our approach in a novel full-body RGB-Depth data set, showing accurate estimation of soft biometrics and better segmentation accuracy in comparison with random forest approach without requiring large training data.
Keywords: 3D shape context; 3D point cloud alignment; Depth maps; Human body segmentation; Soft biometry analysis
|
|
|
Victor Ponce, Sergio Escalera, Marc Perez, Oriol Janes, & Xavier Baro. (2015). Non-Verbal Communication Analysis in Victim-Offender Mediations. PRL - Pattern Recognition Letters, 67(1), 19–27.
Abstract: We present a non-invasive ambient intelligence framework for the semi-automatic analysis of non-verbal communication applied to the restorative justice field. We propose the use of computer vision and social signal processing technologies in real scenarios of Victim–Offender Mediations, applying feature extraction techniques to multi-modal audio-RGB-depth data. We compute a set of behavioral indicators that define communicative cues from the fields of psychology and observational methodology. We test our methodology on data captured in real Victim–Offender Mediation sessions in Catalonia. We define the ground truth based on expert opinions when annotating the observed social responses. Using different state of the art binary classification approaches, our system achieves recognition accuracies of 86% when predicting satisfaction, and 79% when predicting both agreement and receptivity. Applying a regression strategy, we obtain a mean deviation for the predictions between 0.5 and 0.7 in the range [1–5] for the computed social signals.
Keywords: Victim–Offender Mediation; Multi-modal human behavior analysis; Face and gesture recognition; Social signal processing; Computer vision; Machine learning
|
|
|
Sergio Escalera. (2013). Multi-Modal Human Behaviour Analysis from Visual Data Sources. ERCIM - ERCIM News journal, 21–22.
Abstract: The Human Pose Recovery and Behaviour Analysis group (HuPBA), University of Barcelona, is developing a line of research on multi-modal analysis of humans in visual data. The novel technology is being applied in several scenarios with high social impact, including sign language recognition, assisted technology and supported diagnosis for the elderly and people with mental/physical disabilities, fitness conditioning, and Human Computer Interaction.
|
|
|
Pau Rodriguez, Miguel Angel Bautista, Sergio Escalera, & Jordi Gonzalez. (2018). Beyond Oneshot Encoding: lower dimensional target embedding. IMAVIS - Image and Vision Computing, 75, 21–31.
Abstract: Target encoding plays a central role when learning Convolutional Neural Networks. In this realm, one-hot encoding is the most prevalent strategy due to its simplicity. However, this so widespread encoding schema assumes a flat label space, thus ignoring rich relationships existing among labels that can be exploited during training. In large-scale datasets, data does not span the full label space, but instead lies in a low-dimensional output manifold. Following this observation, we embed the targets into a low-dimensional space, drastically improving convergence speed while preserving accuracy. Our contribution is two fold: (i) We show that random projections of the label space are a valid tool to find such lower dimensional embeddings, boosting dramatically convergence rates at zero computational cost; and (ii) we propose a normalized eigenrepresentation of the class manifold that encodes the targets with minimal information loss, improving the accuracy of random projections encoding while enjoying the same convergence rates. Experiments on CIFAR-100, CUB200-2011, Imagenet, and MIT Places demonstrate that the proposed approach drastically improves convergence speed while reaching very competitive accuracy rates.
Keywords: Error correcting output codes; Output embeddings; Deep learning; Computer vision
|
|