|
Jordi Esquirol, Cristina Palmero, Vanessa Bayo, Miquel Angel Cos, Sergio Escalera, David Sanchez, et al. (2017). Automatic RBG-depth-pressure anthropometric analysis and individualised sleep solution prescription. JMET - Journal of Medical Engineering & Technology, 486–497.
Abstract: INTRODUCTION:
Sleep surfaces must adapt to individual somatotypic features to maintain a comfortable, convenient and healthy sleep, preventing diseases and injuries. Individually determining the most adequate rest surface can often be a complex and subjective question.
OBJECTIVES:
To design and validate an automatic multimodal somatotype determination model to automatically recommend an individually designed mattress-topper-pillow combination.
METHODS:
Design and validation of an automated prescription model for an individualised sleep system is performed through a single-image 2 D-3 D analysis and body pressure distribution, to objectively determine optimal individual sleep surfaces combining five different mattress densities, three different toppers and three cervical pillows.
RESULTS:
A final study (n = 151) and re-analysis (n = 117) defined and validated the model, showing high correlations between calculated and real data (>85% in height and body circumferences, 89.9% in weight, 80.4% in body mass index and more than 70% in morphotype categorisation).
CONCLUSIONS:
Somatotype determination model can accurately prescribe an individualised sleep solution. This can be useful for healthy people and for health centres that need to adapt sleep surfaces to people with special needs. Next steps will increase model's accuracy and analise, if this prescribed individualised sleep solution can improve sleep quantity and quality; additionally, future studies will adapt the model to mattresses with technological improvements, tailor-made production and will define interfaces for people with special needs.
|
|
|
Huamin Ren, Nattiya Kanhabua, Andreas Mogelmose, Weifeng Liu, Kaustubh Kulkarni, Sergio Escalera, et al. (2018). Back-dropout Transfer Learning for Action Recognition. IETCV - IET Computer Vision, 12(4), 484–491.
Abstract: Transfer learning aims at adapting a model learned from source dataset to target dataset. It is a beneficial approach especially when annotating on the target dataset is expensive or infeasible. Transfer learning has demonstrated its powerful learning capabilities in various vision tasks. Despite transfer learning being a promising approach, it is still an open question how to adapt the model learned from the source dataset to the target dataset. One big challenge is to prevent the impact of category bias on classification performance. Dataset bias exists when two images from the same category, but from different datasets, are not classified as the same. To address this problem, a transfer learning algorithm has been proposed, called negative back-dropout transfer learning (NB-TL), which utilizes images that have been misclassified and further performs back-dropout strategy on them to penalize errors. Experimental results demonstrate the effectiveness of the proposed algorithm. In particular, the authors evaluate the performance of the proposed NB-TL algorithm on UCF 101 action recognition dataset, achieving 88.9% recognition rate.
Keywords: Learning (artificial intelligence); Pattern Recognition
|
|
|
Clementine Decamps, Alexis Arnaud, Florent Petitprez, Mira Ayadi, Aurelia Baures, Lucile Armenoult, et al. (2021). DECONbench: a benchmarking platform dedicated to deconvolution methods for tumor heterogeneity quantification. BMC Bioinformatics, 22, 473.
Abstract: Quantification of tumor heterogeneity is essential to better understand cancer progression and to adapt therapeutic treatments to patient specificities. Bioinformatic tools to assess the different cell populations from single-omic datasets as bulk transcriptome or methylome samples have been recently developed, including reference-based and reference-free methods. Improved methods using multi-omic datasets are yet to be developed in the future and the community would need systematic tools to perform a comparative evaluation of these algorithms on controlled data.
|
|
|
Sergio Escalera, David Masip, Eloi Puertas, Petia Radeva, & Oriol Pujol. (2011). Online Error-Correcting Output Codes. PRL - Pattern Recognition Letters, 32(3), 458–467.
Abstract: IF JCR CCIA 1.303 2009 54/103
This article proposes a general extension of the error correcting output codes framework to the online learning scenario. As a result, the final classifier handles the addition of new classes independently of the base classifier used. In particular, this extension supports the use of both online example incremental and batch classifiers as base learners. The extension of the traditional problem independent codings one-versus-all and one-versus-one is introduced. Furthermore, two new codings are proposed, unbalanced online ECOC and a problem dependent online ECOC. This last online coding technique takes advantage of the problem data for minimizing the number of dichotomizers used in the ECOC framework while preserving a high accuracy. These techniques are validated on an online setting of 11 data sets from UCI database and applied to two real machine vision applications: traffic sign recognition and face recognition. As a result, the online ECOC techniques proposed provide a feasible and robust way for handling new classes using any base classifier.
|
|
|
Frederic Sampedro, & Sergio Escalera. (2015). Spatial codification of label predictions in Multi-scale Stacked Sequential Learning: A case study on multi-class medical volume segmentation. IETCV - IET Computer Vision, 9(3), 439–446.
Abstract: In this study, the authors propose the spatial codification of label predictions within the multi-scale stacked sequential learning (MSSL) framework, a successful learning scheme to deal with non-independent identically distributed data entries. After providing a motivation for this objective, they describe its theoretical framework based on the introduction of the blurred shape model as a smart descriptor to codify the spatial distribution of the predicted labels and define the new extended feature set for the second stacked classifier. They then particularise this scheme to be applied in volume segmentation applications. Finally, they test the implementation of the proposed framework in two medical volume segmentation datasets, obtaining significant performance improvements (with a 95% of confidence) in comparison to standard Adaboost classifier and classical MSSL approaches.
|
|