|
Francesco Ciompi, Oriol Pujol, Carlo Gatta, Oriol Rodriguez-Leor, J. Mauri, & Petia Radeva. (2010). Fusing in-vitro and in-vivo intravascular ultrasound data for plaque characterization. IJCI - International Journal of Cardiovascular Imaging, 26(7), 763–779.
Abstract: Accurate detection of in-vivo vulnerable plaque in coronary arteries is still an open problem. Recent studies show that it is highly related to tissue structure and composition. Intravascular Ultrasound (IVUS) is a powerful imaging technique that gives a detailed cross-sectional image of the vessel, allowing to explore arteries morphology. IVUS data validation is usually performed by comparing post-mortem (in-vitro) IVUS data and corresponding histological analysis of the tissue. The main drawback of this method is the few number of available case studies and validated data due to the complex procedure of histological analysis of the tissue. On the other hand, IVUS data from in-vivo cases is easy to obtain but it can not be histologically validated. In this work, we propose to enhance the in-vitro training data set by selectively including examples from in-vivo plaques. For this purpose, a Sequential Floating Forward Selection method is reformulated in the context of plaque characterization. The enhanced classifier performance is validated on in-vitro data set, yielding an overall accuracy of 91.59% in discriminating among fibrotic, lipidic and calcified plaques, while reducing the gap between in-vivo and in-vitro data analysis. Experimental results suggest that the obtained classifier could be properly applied on in-vivo plaque characterization and also demonstrate that the common hypothesis of assuming the difference between in-vivo and in-vitro as negligible is incorrect.
|
|
|
Oriol Pujol, Sergio Escalera, & Petia Radeva. (2008). An Incremental Node Embedding Technique for Error Correcting Output Codes. PR - Pattern Recognition, 713–725.
|
|
|
Miguel Angel Bautista, Sergio Escalera, Xavier Baro, Petia Radeva, Jordi Vitria, & Oriol Pujol. (2011). Minimal Design of Error-Correcting Output Codes. PRL - Pattern Recognition Letters, 33(6), 693–702.
Abstract: IF JCR CCIA 1.303 2009 54/103
The classification of large number of object categories is a challenging trend in the pattern recognition field. In literature, this is often addressed using an ensemble of classifiers. In this scope, the Error-correcting output codes framework has demonstrated to be a powerful tool for combining classifiers. However, most state-of-the-art ECOC approaches use a linear or exponential number of classifiers, making the discrimination of a large number of classes unfeasible. In this paper, we explore and propose a minimal design of ECOC in terms of the number of classifiers. Evolutionary computation is used for tuning the parameters of the classifiers and looking for the best minimal ECOC code configuration. The results over several public UCI datasets and different multi-class computer vision problems show that the proposed methodology obtains comparable (even better) results than state-of-the-art ECOC methodologies with far less number of dichotomizers.
Keywords: Multi-class classification; Error-correcting output codes; Ensemble of classifiers
|
|
|
Oriol Pujol, Debora Gil, & Petia Radeva. (2005). Fundamentals of Stop and Go active models. Image and Vision Computing, 23(8), 681–691.
Abstract: An efficient snake formulation should conform to the idea of picking the smoothest curve among all the shapes approximating an object of interest. In current geodesic snakes, the regularizing curvature also affects the convergence stage, hindering the latter at concave regions. In the present work, we make use of characteristic functions to define a novel geodesic formulation that decouples regularity and convergence. This term decoupling endows the snake with higher adaptability to non-convex shapes. Convergence is ensured by splitting the definition of the external force into an attractive vector field and a repulsive one. In our paper, we propose to use likelihood maps as approximation of characteristic functions of object appearance. The better efficiency and accuracy of our decoupled scheme are illustrated in the particular case of feature space-based segmentation.
Keywords: Deformable models; Geodesic snakes; Region-based segmentation
|
|
|
Sergio Escalera, Oriol Pujol, & Petia Radeva. (2010). Error-Correcting Output Codes Library. JMLR - Journal of Machine Learning Research, 11, 661–664.
Abstract: (Feb):661−664
In this paper, we present an open source Error-Correcting Output Codes (ECOC) library. The ECOC framework is a powerful tool to deal with multi-class categorization problems. This library contains both state-of-the-art coding (one-versus-one, one-versus-all, dense random, sparse random, DECOC, forest-ECOC, and ECOC-ONE) and decoding designs (hamming, euclidean, inverse hamming, laplacian, β-density, attenuated, loss-based, probabilistic kernel-based, and loss-weighted) with the parameters defined by the authors, as well as the option to include your own coding, decoding, and base classifier.
|
|