|
Zhengying Liu, Adrien Pavao, Zhen Xu, Sergio Escalera, Fabio Ferreira, Isabelle Guyon, et al. (2021). Winning Solutions and Post-Challenge Analyses of the ChaLearn AutoDL Challenge 2019. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9), 3108–3125.
Abstract: This paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series, which helped sorting out a profusion of AutoML solutions for Deep Learning (DL) that had been introduced in a variety of settings, but lacked fair comparisons. All input data modalities (time series, images, videos, text, tabular) were formatted as tensors and all tasks were multi-label classification problems. Code submissions were executed on hidden tasks, with limited time and computational resources, pushing solutions that get results quickly. In this setting, DL methods dominated, though popular Neural Architecture Search (NAS) was impractical. Solutions relied on fine-tuned pre-trained networks, with architectures matching data modality. Post-challenge tests did not reveal improvements beyond the imposed time limit. While no component is particularly original or novel, a high level modular organization emerged featuring a “meta-learner”, “data ingestor”, “model selector”, “model/learner”, and “evaluator”. This modularity enabled ablation studies, which revealed the importance of (off-platform) meta-learning, ensembling, and efficient data management. Experiments on heterogeneous module combinations further confirm the (local) optimality of the winning solutions. Our challenge legacy includes an ever-lasting benchmark (http://autodl.chalearn.org), the open-sourced code of the winners, and a free “AutoDL self-service.”
|
|
|
Dorota Kaminska, Kadir Aktas, Davit Rizhinashvili, Danila Kuklyanov, Abdallah Hussein Sham, Sergio Escalera, et al. (2021). Two-stage Recognition and Beyond for Compound Facial Emotion Recognition. Electronics, 10(22), 2847.
Abstract: Facial emotion recognition is an inherently complex problem due to individual diversity in facial features and racial and cultural differences. Moreover, facial expressions typically reflect the mixture of people’s emotional statuses, which can be expressed using compound emotions. Compound facial emotion recognition makes the problem even more difficult because the discrimination between dominant and complementary emotions is usually weak. We have created a database that includes 31,250 facial images with different emotions of 115 subjects whose gender distribution is almost uniform to address compound emotion recognition. In addition, we have organized a competition based on the proposed dataset, held at FG workshop 2020. This paper analyzes the winner’s approach—a two-stage recognition method (1st stage, coarse recognition; 2nd stage, fine recognition), which enhances the classification of symmetrical emotion labels.
Keywords: compound emotion recognition; facial expression recognition; dominant and complementary emotion recognition; deep learning
|
|
|
Mohammad ali Bagheri, Qigang Gao, & Sergio Escalera. (2013). A Genetic-based Subspace Analysis Method for Improving Error-Correcting Output Coding. PR - Pattern Recognition, 46(10), 2830–2839.
Abstract: Two key factors affecting the performance of Error Correcting Output Codes (ECOC) in multiclass classification problems are the independence of binary classifiers and the problem-dependent coding design. In this paper, we propose an evolutionary algorithm-based approach to the design of an application-dependent codematrix in the ECOC framework. The central idea of this work is to design a three-dimensional codematrix, where the third dimension is the feature space of the problem domain. In order to do that, we consider the feature space in the design process of the codematrix with the aim of improving the independence and accuracy of binary classifiers. The proposed method takes advantage of some basic concepts of ensemble classification, such as diversity of classifiers, and also benefits from the evolutionary approach for optimizing the three-dimensional codematrix, taking into account the problem domain. We provide a set of experimental results using a set of benchmark datasets from the UCI Machine Learning Repository, as well as two real multiclass Computer Vision problems. Both sets of experiments are conducted using two different base learners: Neural Networks and Decision Trees. The results show that the proposed method increases the classification accuracy in comparison with the state-of-the-art ECOC coding techniques.
Keywords: Error Correcting Output Codes; Evolutionary computation; Multiclass classification; Feature subspace; Ensemble classification
|
|
|
Yunan Li, Jun Wan, Qiguang Miao, Sergio Escalera, Huijuan Fang, Huizhou Chen, et al. (2020). CR-Net: A Deep Classification-Regression Network for Multimodal Apparent Personality Analysis. IJCV - International Journal of Computer Vision, 128, 2763–2780.
Abstract: First impressions strongly influence social interactions, having a high impact in the personal and professional life. In this paper, we present a deep Classification-Regression Network (CR-Net) for analyzing the Big Five personality problem and further assisting on job interview recommendation in a first impressions setup. The setup is based on the ChaLearn First Impressions dataset, including multimodal data with video, audio, and text converted from the corresponding audio data, where each person is talking in front of a camera. In order to give a comprehensive prediction, we analyze the videos from both the entire scene (including the person’s motions and background) and the face of the person. Our CR-Net first performs personality trait classification and applies a regression later, which can obtain accurate predictions for both personality traits and interview recommendation. Furthermore, we present a new loss function called Bell Loss to address inaccurate predictions caused by the regression-to-the-mean problem. Extensive experiments on the First Impressions dataset show the effectiveness of our proposed network, outperforming the state-of-the-art.
|
|
|
Meysam Madadi, Hugo Bertiche, & Sergio Escalera. (2021). Deep unsupervised 3D human body reconstruction from a sparse set of landmarks. IJCV - International Journal of Computer Vision, 129, 2499–2512.
Abstract: In this paper we propose the first deep unsupervised approach in human body reconstruction to estimate body surface from a sparse set of landmarks, so called DeepMurf. We apply a denoising autoencoder to estimate missing landmarks. Then we apply an attention model to estimate body joints from landmarks. Finally, a cascading network is applied to regress parameters of a statistical generative model that reconstructs body. Our set of proposed loss functions allows us to train the network in an unsupervised way. Results on four public datasets show that our approach accurately reconstructs the human body from real world mocap data.
|
|