|
Razieh Rastgoo, Kourosh Kiani, & Sergio Escalera. (2023). ZS-GR: zero-shot gesture recognition from RGB-D videos. MTAP - Multimedia Tools and Applications, 82, 43781–43796.
Abstract: Gesture Recognition (GR) is a challenging research area in computer vision. To tackle the annotation bottleneck in GR, we formulate the problem of Zero-Shot Gesture Recognition (ZS-GR) and propose a two-stream model from two input modalities: RGB and Depth videos. To benefit from the vision Transformer capabilities, we use two vision Transformer models, for human detection and visual features representation. We configure a transformer encoder-decoder architecture, as a fast and accurate human detection model, to overcome the challenges of the current human detection models. Considering the human keypoints, the detected human body is segmented into nine parts. A spatio-temporal representation from human body is obtained using a vision Transformer and a LSTM network. A semantic space maps the visual features to the lingual embedding of the class labels via a Bidirectional Encoder Representations from Transformers (BERT) model. We evaluated the proposed model on five datasets, Montalbano II, MSR Daily Activity 3D, CAD-60, NTU-60, and isoGD obtaining state-of-the-art results compared to state-of-the-art ZS-GR models as well as the Zero-Shot Action Recognition (ZS-AR).
|
|
|
Jianzhy Guo, Zhen Lei, Jun Wan, Egils Avots, Noushin Hajarolasvadi, Boris Knyazev, et al. (2018). Dominant and Complementary Emotion Recognition from Still Images of Faces. ACCESS - IEEE Access, 6, 26391–26403.
Abstract: Emotion recognition has a key role in affective computing. Recently, fine-grained emotion analysis, such as compound facial expression of emotions, has attracted high interest of researchers working on affective computing. A compound facial emotion includes dominant and complementary emotions (e.g., happily-disgusted and sadly-fearful), which is more detailed than the seven classical facial emotions (e.g., happy, disgust, and so on). Current studies on compound emotions are limited to use data sets with limited number of categories and unbalanced data distributions, with labels obtained automatically by machine learning-based algorithms which could lead to inaccuracies. To address these problems, we released the iCV-MEFED data set, which includes 50 classes of compound emotions and labels assessed by psychologists. The task is challenging due to high similarities of compound facial emotions from different categories. In addition, we have organized a challenge based on the proposed iCV-MEFED data set, held at FG workshop 2017. In this paper, we analyze the top three winner methods and perform further detailed experiments on the proposed data set. Experiments indicate that pairs of compound emotion (e.g., surprisingly-happy vs happily-surprised) are more difficult to be recognized if compared with the seven basic emotions. However, we hope the proposed data set can help to pave the way for further research on compound facial emotion recognition.
|
|
|
Egils Avots, Meysam Madadi, Sergio Escalera, Jordi Gonzalez, Xavier Baro, Paul Pallin, et al. (2019). From 2D to 3D geodesic-based garment matching. MTAP - Multimedia Tools and Applications, 78(18), 25829–25853.
Abstract: A new approach for 2D to 3D garment retexturing is proposed based on Gaussian mixture models and thin plate splines (TPS). An automatically segmented garment of an individual is matched to a new source garment and rendered, resulting in augmented images in which the target garment has been retextured using the texture of the source garment. We divide the problem into garment boundary matching based on Gaussian mixture models and then interpolate inner points using surface topology extracted through geodesic paths, which leads to a more realistic result than standard approaches. We evaluated and compared our system quantitatively by root mean square error (RMS) and qualitatively using the mean opinion score (MOS), showing the benefits of the proposed methodology on our gathered dataset.
Keywords: Shape matching; Geodesic distance; Texture mapping; RGBD image processing; Gaussian mixture model
|
|
|
Andre Litvin, Kamal Nasrollahi, Sergio Escalera, Cagri Ozcinar, Thomas B. Moeslund, & Gholamreza Anbarjafari. (2019). A Novel Deep Network Architecture for Reconstructing RGB Facial Images from Thermal for Face Recognition. MTAP - Multimedia Tools and Applications, 78(18), 25259–25271.
Abstract: This work proposes a fully convolutional network architecture for RGB face image generation from a given input thermal face image to be applied in face recognition scenarios. The proposed method is based on the FusionNet architecture and increases robustness against overfitting using dropout after bridge connections, randomised leaky ReLUs (RReLUs), and orthogonal regularization. Furthermore, we propose to use a decoding block with resize convolution instead of transposed convolution to improve final RGB face image generation. To validate our proposed network architecture, we train a face classifier and compare its face recognition rate on the reconstructed RGB images from the proposed architecture, to those when reconstructing images with the original FusionNet, as well as when using the original RGB images. As a result, we are introducing a new architecture which leads to a more accurate network.
Keywords: Fully convolutional networks; FusionNet; Thermal imaging; Face recognition
|
|
|
Razieh Rastgoo, Kourosh Kiani, & Sergio Escalera. (2020). Video-based Isolated Hand Sign Language Recognition Using a Deep Cascaded Model. MTAP - Multimedia Tools and Applications, 79, 22965–22987.
Abstract: In this paper, we propose an efficient cascaded model for sign language recognition taking benefit from spatio-temporal hand-based information using deep learning approaches, especially Single Shot Detector (SSD), Convolutional Neural Network (CNN), and Long Short Term Memory (LSTM), from videos. Our simple yet efficient and accurate model includes two main parts: hand detection and sign recognition. Three types of spatial features, including hand features, Extra Spatial Hand Relation (ESHR) features, and Hand Pose (HP) features, have been fused in the model to feed to LSTM for temporal features extraction. We train SSD model for hand detection using some videos collected from five online sign dictionaries. Our model is evaluated on our proposed dataset (Rastgoo et al., Expert Syst Appl 150: 113336, 2020), including 10’000 sign videos for 100 Persian sign using 10 contributors in 10 different backgrounds, and isoGD dataset. Using the 5-fold cross-validation method, our model outperforms state-of-the-art alternatives in sign language recognition
|
|