|
Lluis Pere de las Heras, David Fernandez, Alicia Fornes, Ernest Valveny, Gemma Sanchez and Josep Llados. 2014. Runlength Histogram Image Signature for Perceptual Retrieval of Architectural Floor Plans. Graphics Recognition. Current Trends and Challenges. Springer Berlin Heidelberg, 135–146. (LNCS.)
Abstract: This paper proposes a runlength histogram signature as a perceptual descriptor of architectural plans in a retrieval scenario. The style of an architectural drawing is characterized by the perception of lines, shapes and texture. Such visual stimuli are the basis for defining semantic concepts as space properties, symmetry, density, etc. We propose runlength histograms extracted in vertical, horizontal and diagonal directions as a characterization of line and space properties in floorplans, so it can be roughly associated to a description of walls and room structure. A retrieval application illustrates the performance of the proposed approach, where given a plan as a query, similar ones are obtained from a database. A ground truth based on human observation has been constructed to validate the hypothesis. Additional retrieval results on sketched building’s facades are reported qualitatively in this paper. Its good description and its adaptability to two different sketch drawings despite its simplicity shows the interest of the proposed approach and opens a challenging research line in graphics recognition.
Keywords: Graphics recognition; Graphics retrieval; Image classification
|
|
|
Lluis Gomez and Dimosthenis Karatzas. 2014. Scene Text Recognition: No Country for Old Men? 1st International Workshop on Robust Reading.
|
|
|
Thanh Ha Do, Salvatore Tabbone and Oriol Ramos Terrades. 2014. Spotting Symbol Using Sparsity over Learned Dictionary of Local Descriptors. 11th IAPR International Workshop on Document Analysis and Systems.156–160.
Abstract: This paper proposes a new approach to spot symbols into graphical documents using sparse representations. More specifically, a dictionary is learned from a training database of local descriptors defined over the documents. Following their sparse representations, interest points sharing similar properties are used to define interest regions. Using an original adaptation of information retrieval techniques, a vector model for interest regions and for a query symbol is built based on its sparsity in a visual vocabulary where the visual words are columns in the learned dictionary. The matching process is performed comparing the similarity between vector models. Evaluation on SESYD datasets demonstrates that our method is promising.
|
|
|
Marçal Rusiñol, J. Chazalon and Jean-Marc Ogier. 2014. Combining Focus Measure Operators to Predict OCR Accuracy in Mobile-Captured Document Images. 11th IAPR International Workshop on Document Analysis and Systems.181–185.
Abstract: Mobile document image acquisition is a new trend raising serious issues in business document processing workflows. Such digitization procedure is unreliable, and integrates many distortions which must be detected as soon as possible, on the mobile, to avoid paying data transmission fees, and losing information due to the inability to re-capture later a document with temporary availability. In this context, out-of-focus blur is major issue: users have no direct control over it, and it seriously degrades OCR recognition. In this paper, we concentrate on the estimation of focus quality, to ensure a sufficient legibility of a document image for OCR processing. We propose two contributions to improve OCR accuracy prediction for mobile-captured document images. First, we present 24 focus measures, never tested on document images, which are fast to compute and require no training. Second, we show that a combination of those measures enables state-of-the art performance regarding the correlation with OCR accuracy. The resulting approach is fast, robust, and easy to implement in a mobile device. Experiments are performed on a public dataset, and precise details about image processing are given.
|
|
|
Marçal Rusiñol, J. Chazalon and Jean-Marc Ogier. 2014. Normalisation et validation d'images de documents capturées en mobilité. Colloque International Francophone sur l'Écrit et le Document.109–124.
Abstract: Mobile document image acquisition integrates many distortions which must be corrected or detected on the device, before the document becomes unavailable or paying data transmission fees. In this paper, we propose a system to correct perspective and illumination issues, and estimate the sharpness of the image for OCR recognition. The correction step relies on fast and accurate border detection followed by illumination normalization. Its evaluation on a private dataset shows a clear improvement on OCR accuracy. The quality assessment
step relies on a combination of focus measures. Its evaluation on a public dataset shows that this simple method compares well to state of the art, learning-based methods which cannot be embedded on a mobile, and outperforms metric-based methods.
Keywords: mobile document image acquisition; perspective correction; illumination correction; quality assessment; focus measure; OCR accuracy prediction
|
|
|
Francesco Brughi, Debora Gil, Llorenç Badiella, Eva Jove Casabella and Oriol Ramos Terrades. 2014. Exploring the impact of inter-query variability on the performance of retrieval systems. 11th International Conference on Image Analysis and Recognition. Springer International Publishing, 413–420. (LNCS.)
Abstract: This paper introduces a framework for evaluating the performance of information retrieval systems. Current evaluation metrics provide an average score that does not consider performance variability across the query set. In this manner, conclusions lack of any statistical significance, yielding poor inference to cases outside the query set and possibly unfair comparisons. We propose to apply statistical methods in order to obtain a more informative measure for problems in which different query classes can be identified. In this context, we assess the performance variability on two levels: overall variability across the whole query set and specific query class-related variability. To this end, we estimate confidence bands for precision-recall curves, and we apply ANOVA in order to assess the significance of the performance across different query classes.
|
|
|
P. Wang, V. Eglin, C. Garcia, C. Largeron, Josep Llados and Alicia Fornes. 2014. Représentation par graphe de mots manuscrits dans les images pour la recherche par similarité. Colloque International Francophone sur l'Écrit et le Document.233–248.
Abstract: Effective information retrieval on handwritten document images has always been
a challenging task. In this paper, we propose a novel handwritten word spotting approach based on graph representation. The presented model comprises both topological and morphological signatures of handwriting. Skeleton-based graphs with the Shape Context labeled vertexes are established for connected components. Each word image is represented as a sequence of graphs. In order to be robust to the handwriting variations, an exhaustive merging process based on DTW alignment results introduced in the similarity measure between word images. With respect to the computation complexity, an approximate graph edit distance approach using bipartite matching is employed for graph matching. The experiments on the George Washington dataset and the marriage records from the Barcelona Cathedral dataset demonstrate that the proposed approach outperforms the state-of-the-art structural methods.
Keywords: word spotting; graph-based representation; shape context description; graph edit distance; DTW; block merging; query by example
|
|
|
Alicia Fornes, V.C.Kieu, M. Visani, N.Journet and Anjan Dutta. 2014. The ICDAR/GREC 2013 Music Scores Competition: Staff Removal. In B.Lamiroy and J.-M. Ogier, eds. Graphics Recognition. Current Trends and Challenges. Springer Berlin Heidelberg, 207–220. (LNCS.)
Abstract: The first competition on music scores that was organized at ICDAR and GREC in 2011 awoke the interest of researchers, who participated in both staff removal and writer identification tasks. In this second edition, we focus on the staff removal task and simulate a real case scenario concerning old and degraded music scores. For this purpose, we have generated a new set of semi-synthetic images using two degradation models that we previously introduced: local noise and 3D distortions. In this extended paper we provide an extended description of the dataset, degradation models, evaluation metrics, the participant’s methods and the obtained results that could not be presented at ICDAR and GREC proceedings due to page limitations.
Keywords: Competition; Graphics recognition; Music scores; Writer identification; Staff removal
|
|
|
Antonio Clavelli. 2014. A computational model of eye guidance, searching for text in real scene images. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: Searching for text objects in real scene images is an open problem and a very active computer vision research area. A large number of methods have been proposed tackling the text search as extension of the ones from the document analysis field or inspired by general purpose object detection methods. However the general problem of object search in real scene images remains an extremely challenging problem due to the huge variability in object appearance. This thesis builds on top of the most recent findings in the visual attention literature presenting a novel computational model of eye guidance aiming to better describe text object search in real scene images.
First are presented the relevant state-of-the-art results from the visual attention literature regarding eye movements and visual search. Relevant models of attention are discussed and integrated with recent observations on the role of top-down constraints and the emerging need for a layered model of attention in which saliency is not the only factor guiding attention. Visual attention is then explained by the interaction of several modulating factors, such as objects, value, plans and saliency. Then we introduce our probabilistic formulation of attention deployment in real scene. The model is based on the rationale that oculomotor control depends on two interacting but distinct processes: an attentional process that assigns value to the sources of information and motor process that flexibly links information with action.
In such framework, the choice of where to look next is task-dependent and oriented to classes of objects embedded within pictures of complex scenes. The dependence on task is taken into account by exploiting the value and the reward of gazing at certain image patches or proto-objects that provide a sparse representation of the scene objects.
In the experimental section the model is tested in laboratory condition, comparing model simulations with data from eye tracking experiments. The comparison is qualitative in terms of observable scan paths and quantitative in terms of statistical similarity of gaze shift amplitude. Experiments are performed using eye tracking data from both a publicly available dataset of face and text and from newly performed eye-tracking experiments on a dataset of street view pictures containing text. The last part of this thesis is dedicated to study the extent to which the proposed model can account for human eye movements in a low constrained setting. We used a mobile eye tracking device and an ad-hoc developed methodology to compare model simulated eye data with the human eye data from mobile eye tracking recordings. Such setting allow to test the model in an incomplete visual information condition, reproducing a close to real-life search task.
|
|
|
Jon Almazan. 2014. Learning to Represent Handwritten Shapes and Words for Matching and Recognition. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: Writing is one of the most important forms of communication and for centuries, handwriting had been the most reliable way to preserve knowledge. However, despite the recent development of printing houses and electronic devices, handwriting is still broadly used for taking notes, doing annotations, or sketching ideas.
Transferring the ability of understanding handwritten text or recognizing handwritten shapes to computers has been the goal of many researches due to its huge importance for many different fields. However, designing good representations to deal with handwritten shapes, e.g. symbols or words, is a very challenging problem due to the large variability of these kinds of shapes. One of the consequences of working with handwritten shapes is that we need representations to be robust, i.e., able to adapt to large intra-class variability. We need representations to be discriminative, i.e., able to learn what are the differences between classes. And, we need representations to be efficient, i.e., able to be rapidly computed and compared. Unfortunately, current techniques of handwritten shape representation for matching and recognition do not fulfill some or all of these requirements.
Through this thesis we focus on the problem of learning to represent handwritten shapes aimed at retrieval and recognition tasks. Concretely, on the first part of the thesis, we focus on the general problem of representing any kind of handwritten shape. We first present a novel shape descriptor based on a deformable grid that deals with large deformations by adapting to the shape and where the cells of the grid can be used to extract different features. Then, we propose to use this descriptor to learn statistical models, based on the Active Appearance Model, that jointly learns the variability in structure and texture of a given class. Then, on the second part, we focus on a concrete application, the problem of representing handwritten words, for the tasks of word spotting, where the goal is to find all instances of a query word in a dataset of images, and recognition. First, we address the segmentation-free problem and propose an unsupervised, sliding-window-based approach that achieves state-of- the-art results in two public datasets. Second, we address the more challenging multi-writer problem, where the variability in words exponentially increases. We describe an approach in which both word images and text strings are embedded in a common vectorial subspace, and where those that represent the same word are close together. This is achieved by a combination of label embedding and attributes learning, and a common subspace regression. This leads to a low-dimensional, unified representation of word images and strings, resulting in a method that allows one to perform either image and text searches, as well as image transcription, in a unified framework. We evaluate our methods on different public datasets of both handwritten documents and natural images showing results comparable or better than the state-of-the-art on spotting and recognition tasks.
|
|