|
Pau Riba, Jon Almazan, Alicia Fornes, David Fernandez, Ernest Valveny and Josep Llados. 2014. e-Crowds: a mobile platform for browsing and searching in historical demographyrelated manuscripts. 14th International Conference on Frontiers in Handwriting Recognition.228–233.
Abstract: This paper presents a prototype system running on portable devices for browsing and word searching through historical handwritten document collections. The platform adapts the paradigm of eBook reading, where the narrative is not necessarily sequential, but centered on the user actions. The novelty is to replace digitally born books by digitized historical manuscripts of marriage licenses, so document analysis tasks are required in the browser. With an active reading paradigm, the user can cast queries of people names, so he/she can implicitly follow genealogical links. In addition, the system allows combined searches: the user can refine a search by adding more words to search. As a second contribution, the retrieval functionality involves as a core technology a word spotting module with an unified approach, which allows combined query searches, and also two input modalities: query-by-example, and query-by-string.
|
|
|
Anjan Dutta. 2014. Inexact Subgraph Matching Applied to Symbol Spotting in Graphical Documents. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: There is a resurgence in the use of structural approaches in the usual object recognition and retrieval problem. Graph theory, in particular, graph matching plays a relevant role in that. Specifically, the detection of an object (or a part of that) in an image in terms of structural features can be formulated as a subgraph matching. Subgraph matching is a challenging task. Specially due to the presence of outliers most of the graph matching algorithms do not perform well in subgraph matching scenario. Also exact subgraph isomorphism has proven to be an NP-complete problem. So naturally, in graph matching community, there are lot of efforts addressing the problem of subgraph matching within suboptimal bound. Most of them work with approximate algorithms that try to get an inexact solution in estimated way. In addition, usual recognition must cope with distortion. Inexact graph matching consists in finding the best isomorphism under a similarity measure. Theoretically this thesis proposes algorithms for solving subgraph matching in an approximate and inexact way.
We consider the symbol spotting problem on graphical documents or line drawings from application point of view. This is a well known problem in the graphics recognition community. It can be further applied for indexing and classification of documents based on their contents. The structural nature of this kind of documents easily motivates one for giving a graph based representation. So the symbol spotting problem on graphical documents can be considered as a subgraph matching problem. The main challenges in this application domain is the noise and distortions that might come during the usage, digitalization and raster to vector conversion of those documents. Apart from that computer vision nowadays is not any more confined within a limited number of images. So dealing a huge number of images with graph based method is a further challenge.
In this thesis, on one hand, we have worked on efficient and robust graph representation to cope with the noise and distortions coming from documents. On the other hand, we have worked on different graph based methods and framework to solve the subgraph matching problem in a better approximated way, which can also deal with considerable number of images. Firstly, we propose a symbol spotting method by hashing serialized subgraphs. Graph serialization allows to create factorized substructures such as graph paths, which can be organized in hash tables depending on the structural similarities of the serialized subgraphs. The involvement of hashing techniques helps to reduce the search space substantially and speeds up the spotting procedure. Secondly, we introduce contextual similarities based on the walk based propagation on tensor product graph. These contextual similarities involve higher order information and more reliable than pairwise similarities. We use these higher order similarities to formulate subgraph matching as a node and edge selection problem in the tensor product graph. Thirdly, we propose near convex grouping to form near convex region adjacency graph which eliminates the limitations of traditional region adjacency graph representation for graphic recognition. Fourthly, we propose a hierarchical graph representation by simplifying/correcting the structural errors to create a hierarchical graph of the base graph. Later these hierarchical graph structures are matched with some graph matching methods. Apart from that, in this thesis we have provided an overall experimental comparison of all the methods and some of the state-of-the-art methods. Furthermore, some dataset models have also been proposed.
|
|
|
Christophe Rigaud, Dimosthenis Karatzas, Jean-Christophe Burie and Jean-Marc Ogier. 2014. Color descriptor for content-based drawing retrieval. 11th IAPR International Workshop on Document Analysis and Systems.267–271.
Abstract: Human detection in computer vision field is an active field of research. Extending this to human-like drawings such as the main characters in comic book stories is not trivial. Comics analysis is a very recent field of research at the intersection of graphics, texts, objects and people recognition. The detection of the main comic characters is an essential step towards a fully automatic comic book understanding. This paper presents a color-based approach for comics character retrieval using content-based drawing retrieval and color palette.
|
|
|
Clement Guerin, Christophe Rigaud, Karell Bertet, Jean-Christophe Burie, Arnaud Revel and Jean-Marc Ogier. 2014. Réduction de l’espace de recherche pour les personnages de bandes dessinées. 19th National Congress Reconnaissance de Formes et l'Intelligence Artificielle.
Abstract: Les bandes dessinées représentent un patrimoine culturel important dans de nombreux pays et leur numérisation massive offre la possibilité d'effectuer des recherches dans le contenu des images. À ce jour, ce sont principalement les structures des pages et leurs contenus textuels qui ont été étudiés, peu de travaux portent sur le contenu graphique. Nous proposons de nous appuyer sur des éléments déjà étudiés tels que la position des cases et des bulles, pour réduire l'espace de recherche et localiser les personnages en fonction de la queue des bulles. L'évaluation de nos différentes contributions à partir de la base eBDtheque montre un taux de détection des queues de bulle de 81.2%, de localisation des personnages allant jusqu'à 85% et un gain d'espace de recherche de plus de 50%.
Keywords: contextual search; document analysis; comics characters
|
|
|
Christophe Rigaud and Clement Guerin. 2014. Localisation contextuelle des personnages de bandes dessinées. Colloque International Francophone sur l'Écrit et le Document.
Abstract: Les auteurs proposent une méthode de localisation des personnages dans des cases de bandes dessinées en s'appuyant sur les caractéristiques des bulles de dialogue. L'évaluation montre un taux de localisation des personnages allant jusqu'à 65%.
|
|
|
Jon Almazan, Albert Gordo, Alicia Fornes and Ernest Valveny. 2014. Word Spotting and Recognition with Embedded Attributes. TPAMI, 36(12), 2552–2566.
Abstract: This article addresses the problems of word spotting and word recognition on images. In word spotting, the goal is to find all instances of a query word in a dataset of images. In recognition, the goal is to recognize the content of the word image, usually aided by a dictionary or lexicon. We describe an approach in which both word images and text strings are embedded in a common vectorial subspace. This is achieved by a combination of label embedding and attributes learning, and a common subspace regression. In this subspace, images and strings that represent the same word are close together, allowing one to cast recognition and retrieval tasks as a nearest neighbor problem. Contrary to most other existing methods, our representation has a fixed length, is low dimensional, and is very fast to compute and, especially, to compare. We test our approach on four public datasets of both handwritten documents and natural images showing results comparable or better than the state-of-the-art on spotting and recognition tasks.
|
|
|
Alicia Fornes and Gemma Sanchez. 2014. Analysis and Recognition of Music Scores. In D. Doermann and K. Tombre, eds. Handbook of Document Image Processing and Recognition. Springer London, 749–774.
Abstract: The analysis and recognition of music scores has attracted the interest of researchers for decades. Optical Music Recognition (OMR) is a classical research field of Document Image Analysis and Recognition (DIAR), whose aim is to extract information from music scores. Music scores contain both graphical and textual information, and for this reason, techniques are closely related to graphics recognition and text recognition. Since music scores use a particular diagrammatic notation that follow the rules of music theory, many approaches make use of context information to guide the recognition and solve ambiguities. This chapter overviews the main Optical Music Recognition (OMR) approaches. Firstly, the different methods are grouped according to the OMR stages, namely, staff removal, music symbol recognition, and syntactical analysis. Secondly, specific approaches for old and handwritten music scores are reviewed. Finally, online approaches and commercial systems are also commented.
|
|
|
Jon Almazan, Albert Gordo, Alicia Fornes and Ernest Valveny. 2014. Segmentation-free Word Spotting with Exemplar SVMs. PR, 47(12), 3967–3978.
Abstract: In this paper we propose an unsupervised segmentation-free method for word spotting in document images. Documents are represented with a grid of HOG descriptors, and a sliding-window approach is used to locate the document regions that are most similar to the query. We use the Exemplar SVM framework to produce a better representation of the query in an unsupervised way. Then, we use a more discriminative representation based on Fisher Vector to rerank the best regions retrieved, and the most promising ones are used to expand the Exemplar SVM training set and improve the query representation. Finally, the document descriptors are precomputed and compressed with Product Quantization. This offers two advantages: first, a large number of documents can be kept in RAM memory at the same time. Second, the sliding window becomes significantly faster since distances between quantized HOG descriptors can be precomputed. Our results significantly outperform other segmentation-free methods in the literature, both in accuracy and in speed and memory usage.
Keywords: Word spotting; Segmentation-free; Unsupervised learning; Reranking; Query expansion; Compression
|
|
|
Dimosthenis Karatzas, Sergi Robles and Lluis Gomez. 2014. An on-line platform for ground truthing and performance evaluation of text extraction systems. 11th IAPR International Workshop on Document Analysis and Systems.242–246.
Abstract: This paper presents a set of on-line software tools for creating ground truth and calculating performance evaluation metrics for text extraction tasks such as localization, segmentation and recognition. The platform supports the definition of comprehensive ground truth information at different text representation levels while it offers centralised management and quality control of the ground truthing effort. It implements a range of state of the art performance evaluation algorithms and offers functionality for the definition of evaluation scenarios, on-line calculation of various performance metrics and visualisation of the results. The
presented platform, which comprises the backbone of the ICDAR 2011 (challenge 1) and 2013 (challenges 1 and 2) Robust Reading competitions, is now made available for public use.
|
|
|
Lluis Gomez and Dimosthenis Karatzas. 2014. MSER-based Real-Time Text Detection and Tracking. 22nd International Conference on Pattern Recognition.3110–3115.
Abstract: We present a hybrid algorithm for detection and tracking of text in natural scenes that goes beyond the fulldetection approaches in terms of time performance optimization.
A state-of-the-art scene text detection module based on Maximally Stable Extremal Regions (MSER) is used to detect text asynchronously, while on a separate thread detected text objects are tracked by MSER propagation. The cooperation of these two modules yields real time video processing at high frame rates even on low-resource devices.
|
|