|
Manuel Carbonell, Mauricio Villegas, Alicia Fornes and Josep Llados. 2018. Joint Recognition of Handwritten Text and Named Entities with a Neural End-to-end Model. 13th IAPR International Workshop on Document Analysis Systems.399–404.
Abstract: When extracting information from handwritten documents, text transcription and named entity recognition are usually faced as separate subsequent tasks. This has the disadvantage that errors in the first module affect heavily the
performance of the second module. In this work we propose to do both tasks jointly, using a single neural network with a common architecture used for plain text recognition. Experimentally, the work has been tested on a collection of historical marriage records. Results of experiments are presented to show the effect on the performance for different
configurations: different ways of encoding the information, doing or not transfer learning and processing at text line or multi-line region level. The results are comparable to state of the art reported in the ICDAR 2017 Information Extraction competition, even though the proposed technique does not use any dictionaries, language modeling or post processing.
Keywords: Named entity recognition; Handwritten Text Recognition; neural networks
|
|
|
Alicia Fornes and Bart Lamiroy. 2018. Graphics Recognition, Current Trends and Evolutions. Springer International Publishing. (LNCS.)
Abstract: This book constitutes the thoroughly refereed post-conference proceedings of the 12th International Workshop on Graphics Recognition, GREC 2017, held in Kyoto, Japan, in November 2017.
The 10 revised full papers presented were carefully reviewed and selected from 14 initial submissions. They contain both classical and emerging topics of graphics rcognition, namely analysis and detection of diagrams, search and classification, optical music recognition, interpretation of engineering drawings and maps.
|
|
|
Raul Gomez, Lluis Gomez, Jaume Gibert and Dimosthenis Karatzas. 2018. Learning from# Barcelona Instagram data what Locals and Tourists post about its Neighbourhoods. 15th European Conference on Computer Vision Workshops.530–544. (LNCS.)
Abstract: Massive tourism is becoming a big problem for some cities, such as Barcelona, due to its concentration in some neighborhoods. In this work we gather Instagram data related to Barcelona consisting on images-captions pairs and, using the text as a supervisory signal, we learn relations between images, words and neighborhoods. Our goal is to learn which visual elements appear in photos when people is posting about each neighborhood. We perform a language separate treatment of the data and show that it can be extrapolated to a tourists and locals separate analysis, and that tourism is reflected in Social Media at a neighborhood level. The presented pipeline allows analyzing the differences between the images that tourists and locals associate to the different neighborhoods. The proposed method, which can be extended to other cities or subjects, proves that Instagram data can be used to train multi-modal (image and text) machine learning models that are useful to analyze publications about a city at a neighborhood level. We publish the collected dataset, InstaBarcelona and the code used in the analysis.
|
|
|
Y. Patel, Lluis Gomez, Raul Gomez, Marçal Rusiñol, Dimosthenis Karatzas and C.V. Jawahar. 2018. TextTopicNet-Self-Supervised Learning of Visual Features Through Embedding Images on Semantic Text Spaces.
Abstract: The immense success of deep learning based methods in computer vision heavily relies on large scale training datasets. These richly annotated datasets help the network learn discriminative visual features. Collecting and annotating such datasets requires a tremendous amount of human effort and annotations are limited to popular set of classes. As an alternative, learning visual features by designing auxiliary tasks which make use of freely available self-supervision has become increasingly popular in the computer vision community.
In this paper, we put forward an idea to take advantage of multi-modal context to provide self-supervision for the training of computer vision algorithms. We show that adequate visual features can be learned efficiently by training a CNN to predict the semantic textual context in which a particular image is more probable to appear as an illustration. More specifically we use popular text embedding techniques to provide the self-supervision for the training of deep CNN.
|
|
|
Anguelos Nicolaou, Sounak Dey, V.Christlein, A.Maier and Dimosthenis Karatzas. 2018. Non-deterministic Behavior of Ranking-based Metrics when Evaluating Embeddings. International Workshop on Reproducible Research in Pattern Recognition.71–82. (LNCS.)
Abstract: Embedding data into vector spaces is a very popular strategy of pattern recognition methods. When distances between embeddings are quantized, performance metrics become ambiguous. In this paper, we present an analysis of the ambiguity quantized distances introduce and provide bounds on the effect. We demonstrate that it can have a measurable effect in empirical data in state-of-the-art systems. We also approach the phenomenon from a computer security perspective and demonstrate how someone being evaluated by a third party can exploit this ambiguity and greatly outperform a random predictor without even access to the input data. We also suggest a simple solution making the performance metrics, which rely on ranking, totally deterministic and impervious to such exploits.
|
|
|
Dena Bazazian, Dimosthenis Karatzas and Andrew Bagdanov. 2018. Word Spotting in Scene Images based on Character Recognition. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.1872–1874.
Abstract: In this paper we address the problem of unconstrained Word Spotting in scene images. We train a Fully Convolutional Network to produce heatmaps of all the character classes. Then, we employ the Text Proposals approach and, via a rectangle classifier, detect the most likely rectangle for each query word based on the character attribute maps. We evaluate the proposed method on ICDAR2015 and show that it is capable of identifying and recognizing query words in natural scene images.
|
|
|
Suman Ghosh. 2018. Word Spotting and Recognition in Images from Heterogeneous Sources A. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: Text is the most common way of information sharing from ages. With recent development of personal images databases and handwritten historic manuscripts the demand for algorithms to make these databases accessible for browsing and indexing are in rise. Enabling search or understanding large collection of manuscripts or image databases needs fast and robust methods. Researchers have found different ways to represent cropped words for understanding and matching, which works well when words are already segmented. However there is no trivial way to extend these for non-segmented documents. In this thesis we explore different methods for text retrieval and recognition from unsegmented document and scene images. Two different ways of representation exist in literature, one uses a fixed length representation learned from cropped words and another a sequence of features of variable length. Throughout this thesis, we have studied both these representation for their suitability in segmentation free understanding of text. In the first part we are focused on segmentation free word spotting using a fixed length representation. We extended the use of the successful PHOC (Pyramidal Histogram of Character) representation to segmentation free retrieval. In the second part of the thesis, we explore sequence based features and finally, we propose a unified solution where the same framework can generate both kind of representations.
|
|
|
Ilke Demir, Dena Bazazian, Adriana Romero, Viktoriia Sharmanska and Lyne P. Tchapmi. 2018. WiCV 2018: The Fourth Women In Computer Vision Workshop. 4th Women in Computer Vision Workshop.1941–19412.
Abstract: We present WiCV 2018 – Women in Computer Vision Workshop to increase the visibility and inclusion of women researchers in computer vision field, organized in conjunction with CVPR 2018. Computer vision and machine learning have made incredible progress over the past years, yet the number of female researchers is still low both in academia and industry. WiCV is organized to raise visibility of female researchers, to increase the collaboration,
and to provide mentorship and give opportunities to femaleidentifying junior researchers in the field. In its fourth year, we are proud to present the changes and improvements over the past years, summary of statistics for presenters and attendees, followed by expectations from future generations.
Keywords: Conferences; Computer vision; Industries; Object recognition; Engineering profession; Collaboration; Machine learning
|
|
|
Arnau Baro, Pau Riba and Alicia Fornes. 2018. A Starting Point for Handwritten Music Recognition. 1st International Workshop on Reading Music Systems.5–6.
Abstract: In the last years, the interest in Optical Music Recognition (OMR) has reawakened, especially since the appearance of deep learning. However, there are very few works addressing handwritten scores. In this work we describe a full OMR pipeline for handwritten music scores by using Convolutional and Recurrent Neural Networks that could serve as a baseline for the research community.
Keywords: Optical Music Recognition; Long Short-Term Memory; Convolutional Neural Networks; MUSCIMA++; CVCMUSCIMA
|
|
|
Anjan Dutta and Hichem Sahbi. 2018. Stochastic Graphlet Embedding. TNNLS, 1–14.
Abstract: Graph-based methods are known to be successful in many machine learning and pattern classification tasks. These methods consider semi-structured data as graphs where nodes correspond to primitives (parts, interest points, segments,
etc.) and edges characterize the relationships between these primitives. However, these non-vectorial graph data cannot be straightforwardly plugged into off-the-shelf machine learning algorithms without a preliminary step of – explicit/implicit –graph vectorization and embedding. This embedding process
should be resilient to intra-class graph variations while being highly discriminant. In this paper, we propose a novel high-order stochastic graphlet embedding (SGE) that maps graphs into vector spaces. Our main contribution includes a new stochastic search procedure that efficiently parses a given graph and extracts/samples unlimitedly high-order graphlets. We consider
these graphlets, with increasing orders, to model local primitives as well as their increasingly complex interactions. In order to build our graph representation, we measure the distribution of these graphlets into a given graph, using particular hash functions that efficiently assign sampled graphlets into isomorphic sets with a very low probability of collision. When
combined with maximum margin classifiers, these graphlet-based representations have positive impact on the performance of pattern comparison and recognition as corroborated through extensive experiments using standard benchmark databases.
Keywords: Stochastic graphlets; Graph embedding; Graph classification; Graph hashing; Betweenness centrality
|
|