|
J.Kuhn and 10 others. 2015. Advancing Physics Learning Through Traversing a Multi-Modal Experimentation Space. Workshop Proceedings on the 11th International Conference on Intelligent Environments.373–380.
Abstract: Translating conceptual knowledge into real world experiences presents a significant educational challenge. This position paper presents an approach that supports learners in moving seamlessly between conceptual learning and their application in the real world by bringing physical and virtual experiments into everyday settings. Learners are empowered in conducting these situated experiments in a variety of physical settings by leveraging state of the art mobile, augmented reality, and virtual reality technology. A blend of mobile-based multi-sensory physical experiments, augmented reality and enabling virtual environments can allow learners to bridge their conceptual learning with tangible experiences in a completely novel manner. This approach focuses on the learner by applying self-regulated personalised learning techniques, underpinned by innovative pedagogical approaches and adaptation techniques, to ensure that the needs and preferences of each learner are catered for individually.
|
|
|
Lluis Gomez and Dimosthenis Karatzas. 2016. A fast hierarchical method for multi‐script and arbitrary oriented scene text extraction. IJDAR, 19(4), 335–349.
Abstract: Typography and layout lead to the hierarchical organisation of text in words, text lines, paragraphs. This inherent structure is a key property of text in any script and language, which has nonetheless been minimally leveraged by existing text detection methods. This paper addresses the problem of text
segmentation in natural scenes from a hierarchical perspective.
Contrary to existing methods, we make explicit use of text structure, aiming directly to the detection of region groupings corresponding to text within a hierarchy produced by an agglomerative similarity clustering process over individual regions. We propose an optimal way to construct such an hierarchy introducing a feature space designed to produce text group hypotheses with
high recall and a novel stopping rule combining a discriminative classifier and a probabilistic measure of group meaningfulness based in perceptual organization. Results obtained over four standard datasets, covering text in variable orientations and different languages, demonstrate that our algorithm, while being trained in a single mixed dataset, outperforms state of the art
methods in unconstrained scenarios.
Keywords: scene text; segmentation; detection; hierarchical grouping; perceptual organisation
|
|
|
Josep Llados and Gemma Sanchez. 2004. Graph Matching vs. Graph Parsing in Graphics Recognition: A Combined Approach.
|
|
|
Josep Llados, Horst Bunke and Enric Marti. 1997. Finding rotational symmetries by cyclic string matching. PRL, 18(14), 1435–1442.
Abstract: Symmetry is an important shape feature. In this paper, a simple and fast method to detect perfect and distorted rotational symmetries of 2D objects is described. The boundary of a shape is polygonally approximated and represented as a string. Rotational symmetries are found by cyclic string matching between two identical copies of the shape string. The set of minimum cost edit sequences that transform the shape string to a cyclically shifted version of itself define the rotational symmetry and its order. Finally, a modification of the algorithm is proposed to detect reflectional symmetries. Some experimental results are presented to show the reliability of the proposed algorithm
Keywords: Rotational symmetry; Reflectional symmetry; String matching
|
|
|
Lluis Pere de las Heras, Oriol Ramos Terrades, Sergi Robles and Gemma Sanchez. 2015. CVC-FP and SGT: a new database for structural floor plan analysis and its groundtruthing tool. IJDAR, 18(1), 15–30.
Abstract: Recent results on structured learning methods have shown the impact of structural information in a wide range of pattern recognition tasks. In the field of document image analysis, there is a long experience on structural methods for the analysis and information extraction of multiple types of documents. Yet, the lack of conveniently annotated and free access databases has not benefited the progress in some areas such as technical drawing understanding. In this paper, we present a floor plan database, named CVC-FP, that is annotated for the architectural objects and their structural relations. To construct this database, we have implemented a groundtruthing tool, the SGT tool, that allows to make specific this sort of information in a natural manner. This tool has been made for general purpose groundtruthing: It allows to define own object classes and properties, multiple labeling options are possible, grants the cooperative work, and provides user and version control. We finally have collected some of the recent work on floor plan interpretation and present a quantitative benchmark for this database. Both CVC-FP database and the SGT tool are freely released to the research community to ease comparisons between methods and boost reproducible research.
|
|
|
Christophe Rigaud, Clement Guerin, Dimosthenis Karatzas, Jean-Christophe Burie and Jean-Marc Ogier. 2015. Knowledge-driven understanding of images in comic books. IJDAR, 18(3), 199–221.
Abstract: Document analysis is an active field of research, which can attain a complete understanding of the semantics of a given document. One example of the document understanding process is enabling a computer to identify the key elements of a comic book story and arrange them according to a predefined domain knowledge. In this study, we propose a knowledge-driven system that can interact with bottom-up and top-down information to progressively understand the content of a document. We model the comic book’s and the image processing domains knowledge for information consistency analysis. In addition, different image processing methods are improved or developed to extract panels, balloons, tails, texts, comic characters and their semantic relations in an unsupervised way.
Keywords: Document Understanding; comics analysis; expert system
|
|
|
David Aldavert, Marçal Rusiñol, Ricardo Toledo and Josep Llados. 2015. A Study of Bag-of-Visual-Words Representations for Handwritten Keyword Spotting. IJDAR, 18(3), 223–234.
Abstract: The Bag-of-Visual-Words (BoVW) framework has gained popularity among the document image analysis community, specifically as a representation of handwritten words for recognition or spotting purposes. Although in the computer vision field the BoVW method has been greatly improved, most of the approaches in the document image analysis domain still rely on the basic implementation of the BoVW method disregarding such latest refinements. In this paper, we present a review of those improvements and its application to the keyword spotting task. We thoroughly evaluate their impact against a baseline system in the well-known George Washington dataset and compare the obtained results against nine state-of-the-art keyword spotting methods. In addition, we also compare both the baseline and improved systems with the methods presented at the Handwritten Keyword Spotting Competition 2014.
Keywords: Bag-of-Visual-Words; Keyword spotting; Handwritten documents; Performance evaluation
|
|
|
Lluis Pere de las Heras, Ahmed Sheraz, Marcus Liwicki, Ernest Valveny and Gemma Sanchez. 2014. Statistical Segmentation and Structural Recognition for Floor Plan Interpretation. IJDAR, 17(3), 221–237.
Abstract: A generic method for floor plan analysis and interpretation is presented in this article. The method, which is mainly inspired by the way engineers draw and interpret floor plans, applies two recognition steps in a bottom-up manner. First, basic building blocks, i.e., walls, doors, and windows are detected using a statistical patch-based segmentation approach. Second, a graph is generated, and structural pattern recognition techniques are applied to further locate the main entities, i.e., rooms of the building. The proposed approach is able to analyze any type of floor plan regardless of the notation used. We have evaluated our method on different publicly available datasets of real architectural floor plans with different notations. The overall detection and recognition accuracy is about 95 %, which is significantly better than any other state-of-the-art method. Our approach is generic enough such that it could be easily adopted to the recognition and interpretation of any other printed machine-generated structured documents.
|
|
|
Marçal Rusiñol, Lluis Pere de las Heras and Oriol Ramos Terrades. 2014. Flowchart Recognition for Non-Textual Information Retrieval in Patent Search. IR, 17(5-6), 545–562.
Abstract: Relatively little research has been done on the topic of patent image retrieval and in general in most of the approaches the retrieval is performed in terms of a similarity measure between the query image and the images in the corpus. However, systems aimed at overcoming the semantic gap between the visual description of patent images and their conveyed concepts would be very helpful for patent professionals. In this paper we present a flowchart recognition method aimed at achieving a structured representation of flowchart images that can be further queried semantically. The proposed method was submitted to the CLEF-IP 2012 flowchart recognition task. We report the obtained results on this dataset.
Keywords: Flowchart recognition; Patent documents; Text/graphics separation; Raster-to-vector conversion; Symbol recognition
|
|
|
David Fernandez, Josep Llados and Alicia Fornes. 2014. A graph-based approach for segmenting touching lines in historical handwritten documents. IJDAR, 17(3), 293–312.
Abstract: Text line segmentation in handwritten documents is an important task in the recognition of historical documents. Handwritten document images contain text lines with multiple orientations, touching and overlapping characters between consecutive text lines and different document structures, making line segmentation a difficult task. In this paper, we present a new approach for handwritten text line segmentation solving the problems of touching components, curvilinear text lines and horizontally overlapping components. The proposed algorithm formulates line segmentation as finding the central path in the area between two consecutive lines. This is solved as a graph traversal problem. A graph is constructed using the skeleton of the image. Then, a path-finding algorithm is used to find the optimum path between text lines. The proposed algorithm has been evaluated on a comprehensive dataset consisting of five databases: ICDAR2009, ICDAR2013, UMD, the George Washington and the Barcelona Marriages Database. The proposed method outperforms the state-of-the-art considering the different types and difficulties of the benchmarking data.
Keywords: Text line segmentation; Handwritten documents; Document image processing; Historical document analysis
|
|