|
Hana Jarraya, Oriol Ramos Terrades and Josep Llados. 2017. Learning structural loss parameters on graph embedding applied on symbolic graphs. 12th IAPR International Workshop on Graphics Recognition.
Abstract: We propose an amelioration of proposed Graph Embedding (GEM) method in previous work that takes advantages of structural pattern representation and the structured distortion. it models an Attributed Graph (AG) as a Probabilistic Graphical Model (PGM). Then, it learns the parameters of this PGM presented by a vector, as new signature of AG in a lower dimensional vectorial space. We focus to adapt the structured learning algorithm via 1_slack formulation with a suitable risk function, called Graph Edit Distance (GED). It defines the dissimilarity of the ground truth and predicted graph labels. It determines by the error tolerant graph matching using bipartite graph matching algorithm. We apply Structured Support Vector Machines (SSVM) to process classification task. During our experiments, we got our results on the GREC dataset.
|
|
|
Sounak Dey, Anjan Dutta, Josep Llados, Alicia Fornes and Umapada Pal. 2017. Shallow Neural Network Model for Hand-drawn Symbol Recognition in Multi-Writer Scenario. 14th International Conference on Document Analysis and Recognition.31–32.
Abstract: One of the main challenges in hand drawn symbol recognition is the variability among symbols because of the different writer styles. In this paper, we present and discuss some results recognizing hand-drawn symbols with a shallow neural network. A neural network model inspired from the LeNet architecture has been used to achieve state-of-the-art results with
very less training data, which is very unlikely to the data hungry deep neural network. From the results, it has become evident that the neural network architectures can efficiently describe and recognize hand drawn symbols from different writers and can model the inter author aberration
|
|
|
Pau Riba, Anjan Dutta, Josep Llados and Alicia Fornes. 2017. Graph-based deep learning for graphics classification. 14th International Conference on Document Analysis and Recognition.29–30.
Abstract: Graph-based representations are a common way to deal with graphics recognition problems. However, previous works were mainly focused on developing learning-free techniques. The success of deep learning frameworks have proved that learning is a powerful tool to solve many problems, however it is not straightforward to extend these methodologies to non euclidean data such as graphs. On the other hand, graphs are a good representational structure for graphical entities. In this work, we present some deep learning techniques that have been proposed in the literature for graph-based representations and
we show how they can be used in graphics recognition problems
|
|
|
Adria Rico and Alicia Fornes. 2017. Camera-based Optical Music Recognition using a Convolutional Neural Network. 12th IAPR International Workshop on Graphics Recognition.27–28.
Abstract: Optical Music Recognition (OMR) consists in recognizing images of music scores. Contrary to expectation, the current OMR systems usually fail when recognizing images of scores captured by digital cameras and smartphones. In this work, we propose a camera-based OMR system based on Convolutional Neural Networks, showing promising preliminary results
Keywords: optical music recognition; document analysis; convolutional neural network; deep learning
|
|
|
Arnau Baro, Pau Riba, Jorge Calvo-Zaragoza and Alicia Fornes. 2017. Optical Music Recognition by Recurrent Neural Networks. 14th IAPR International Workshop on Graphics Recognition.25–26.
Abstract: Optical Music Recognition is the task of transcribing a music score into a machine readable format. Many music scores are written in a single staff, and therefore, they could be treated as a sequence. Therefore, this work explores the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for reading the music score sequentially, where the LSTM helps in keeping the context. For training, we have used a synthetic dataset of more than 40000 images, labeled at primitive level
Keywords: Optical Music Recognition; Recurrent Neural Network; Long Short-Term Memory
|
|
|
N. Nayef and 14 others. 2017. ICDAR2017 Robust Reading Challenge on Multi-Lingual Scene Text Detection and Script Identification – RRC-MLT. 14th International Conference on Document Analysis and Recognition.1454–1459.
Abstract: Text detection and recognition in a natural environment are key components of many applications, ranging from business card digitization to shop indexation in a street. This competition aims at assessing the ability of state-of-the-art methods to detect Multi-Lingual Text (MLT) in scene images, such as in contents gathered from the Internet media and in modern cities where multiple cultures live and communicate together. This competition is an extension of the Robust Reading Competition (RRC) which has been held since 2003 both in ICDAR and in an online context. The proposed competition is presented as a new challenge of the RRC. The dataset built for this challenge largely extends the previous RRC editions in many aspects: the multi-lingual text, the size of the dataset, the multi-oriented text, the wide variety of scenes. The dataset is comprised of 18,000 images which contain text belonging to 9 languages. The challenge is comprised of three tasks related to text detection and script classification. We have received a total of 16 participations from the research and industrial communities. This paper presents the dataset, the tasks and the findings of this RRC-MLT challenge.
|
|
|
Masakazu Iwamura, Naoyuki Morimoto, Keishi Tainaka, Dena Bazazian, Lluis Gomez and Dimosthenis Karatzas. 2017. ICDAR2017 Robust Reading Challenge on Omnidirectional Video. 14th International Conference on Document Analysis and Recognition.
Abstract: Results of ICDAR 2017 Robust Reading Challenge on Omnidirectional Video are presented. This competition uses Downtown Osaka Scene Text (DOST) Dataset that was captured in Osaka, Japan with an omnidirectional camera. Hence, it consists of sequential images (videos) of different view angles. Regarding the sequential images as videos (video mode), two tasks of localisation and end-to-end recognition are prepared. Regarding them as a set of still images (still image mode), three tasks of localisation, cropped word recognition and end-to-end recognition are prepared. As the dataset has been captured in Japan, the dataset contains Japanese text but also include text consisting of alphanumeric characters (Latin text). Hence, a submitted result for each task is evaluated in three ways: using Japanese only ground truth (GT), using Latin only GT and using combined GTs of both. Finally, by the submission deadline, we have received two submissions in the text localisation task of the still image mode. We intend to continue the competition in the open mode. Expecting further submissions, in this report we provide baseline results in all the tasks in addition to the submissions from the community.
|
|
|
ChunYang, Xu Cheng Yin, Hong Yu, Dimosthenis Karatzas and Yu Cao. 2017. ICDAR2017 Robust Reading Challenge on Text Extraction from Biomedical Literature Figures (DeTEXT). 14th International Conference on Document Analysis and Recognition.1444–1447.
Abstract: Hundreds of millions of figures are available in the biomedical literature, representing important biomedical experimental evidence. Since text is a rich source of information in figures, automatically extracting such text may assist in the task of mining figure information and understanding biomedical documents. Unlike images in the open domain, biomedical figures present a variety of unique challenges. For example, biomedical figures typically have complex layouts, small font sizes, short text, specific text, complex symbols and irregular text arrangements. This paper presents the final results of the ICDAR 2017 Competition on Text Extraction from Biomedical Literature Figures (ICDAR2017 DeTEXT Competition), which aims at extracting (detecting and recognizing) text from biomedical literature figures. Similar to text extraction from scene images and web pictures, ICDAR2017 DeTEXT Competition includes three major tasks, i.e., text detection, cropped word recognition and end-to-end text recognition. Here, we describe in detail the data set, tasks, evaluation protocols and participants of this competition, and report the performance of the participating methods.
|
|
|
Raul Gomez and 7 others. 2017. ICDAR2017 Robust Reading Challenge on COCO-Text. 14th International Conference on Document Analysis and Recognition.
|
|
|
David Aldavert, Marçal Rusiñol and Ricardo Toledo. 2017. Automatic Static/Variable Content Separation in Administrative Document Images. 14th International Conference on Document Analysis and Recognition.
Abstract: In this paper we present an automatic method for separating static and variable content from administrative document images. An alignment approach is able to unsupervisedly build probabilistic templates from a set of examples of the same document kind. Such templates define which is the likelihood of every pixel of being either static or variable content. In the extraction step, the same alignment technique is used to match
an incoming image with the template and to locate the positions where variable fields appear. We validate our approach on the public NIST Structured Tax Forms Dataset.
|
|