|
Lluis Gomez and Dimosthenis Karatzas. 2014. MSER-based Real-Time Text Detection and Tracking. 22nd International Conference on Pattern Recognition.3110–3115.
Abstract: We present a hybrid algorithm for detection and tracking of text in natural scenes that goes beyond the fulldetection approaches in terms of time performance optimization.
A state-of-the-art scene text detection module based on Maximally Stable Extremal Regions (MSER) is used to detect text asynchronously, while on a separate thread detected text objects are tracked by MSER propagation. The cooperation of these two modules yields real time video processing at high frame rates even on low-resource devices.
|
|
|
P. Wang, V. Eglin, C. Garcia, C. Largeron, Josep Llados and Alicia Fornes. 2014. A Coarse-to-Fine Word Spotting Approach for Historical Handwritten Documents Based on Graph Embedding and Graph Edit Distance. 22nd International Conference on Pattern Recognition.3074–3079.
Abstract: Effective information retrieval on handwritten document images has always been a challenging task, especially historical ones. In the paper, we propose a coarse-to-fine handwritten word spotting approach based on graph representation. The presented model comprises both the topological and morphological signatures of the handwriting. Skeleton-based graphs with the Shape Context labelled vertexes are established for connected components. Each word image is represented as a sequence of graphs. Aiming at developing a practical and efficient word spotting approach for large-scale historical handwritten documents, a fast and coarse comparison is first applied to prune the regions that are not similar to the query based on the graph embedding methodology. Afterwards, the query and regions of interest are compared by graph edit distance based on the Dynamic Time Warping alignment. The proposed approach is evaluated on a public dataset containing 50 pages of historical marriage license records. The results show that the proposed approach achieves a compromise between efficiency and accuracy.
Keywords: word spotting; coarse-to-fine mechamism; graphbased representation; graph embedding; graph edit distance
|
|
|
David Fernandez, Jon Almazan, Nuria Cirera, Alicia Fornes and Josep Llados. 2014. BH2M: the Barcelona Historical Handwritten Marriages database. 22nd International Conference on Pattern Recognition.256–261.
Abstract: This paper presents an image database of historical handwritten marriages records stored in the archives of Barcelona cathedral, and the corresponding meta-data addressed to evaluate the performance of document analysis algorithms. The contribution of this paper is twofold. First, it presents a complete ground truth which covers the whole pipeline of handwriting
recognition research, from layout analysis to recognition and understanding. Second, it is the first dataset in the emerging area of genealogical document analysis, where documents are manuscripts pseudo-structured with specific lexicons and the interest is beyond pure transcriptions but context dependent.
|
|
|
Hongxing Gao, Marçal Rusiñol, Dimosthenis Karatzas and Josep Llados. 2014. Embedding Document Structure to Bag-of-Words through Pair-wise Stable Key-regions. 22nd International Conference on Pattern Recognition.2903–2908.
Abstract: Since the document structure carries valuable discriminative information, plenty of efforts have been made for extracting and understanding document structure among which layout analysis approaches are the most commonly used. In this paper, Distance Transform based MSER (DTMSER) is employed to efficiently extract the document structure as a dendrogram of key-regions which roughly correspond to structural elements such as characters, words and paragraphs. Inspired by the Bag
of Words (BoW) framework, we propose an efficient method for structural document matching by representing the document image as a histogram of key-region pairs encoding structural relationships.
Applied to the scenario of document image retrieval, experimental results demonstrate a remarkable improvement when comparing the proposed method with typical BoW and pyramidal BoW methods.
|
|
|
Muhammad Muzzamil Luqman, Thierry Brouard, Jean-Yves Ramel and Josep Llados. 2010. A Content Spotting System For Line Drawing Graphic Document Images. 20th International Conference on Pattern Recognition.3420–3423.
Abstract: We present a content spotting system for line drawing graphic document images. The proposed system is sufficiently domain independent and takes the keyword based information retrieval for graphic documents, one step forward, to Query By Example (QBE) and focused retrieval. During offline learning mode: we vectorize the documents in the repository, represent them by attributed relational graphs, extract regions of interest (ROIs) from them, convert each ROI to a fuzzy structural signature, cluster similar signatures to form ROI classes and build an index for the repository. During online querying mode: a Bayesian network classifier recognizes the ROIs in the query image and the corresponding documents are fetched by looking up in the repository index. Experimental results are presented for synthetic images of architectural and electronic documents.
|
|
|
Anjan Dutta, Umapada Pal, Alicia Fornes and Josep Llados. 2010. An Efficient Staff Removal Technique from Printed Musical Documents. 20th International Conference on Pattern Recognition.1965–1968.
Abstract: Staff removal is an important preprocessing step of the Optical Music Recognition (OMR). The process aims to remove the stafflines from a musical document and retain only the musical symbols, later these symbols are used effectively to identify the music information. This paper proposes a simple but robust method to remove stafflines from printed musical scores. In the proposed methodology we have considered a staffline segment as a horizontal linkage of vertical black runs with uniform height. We have used the neighbouring properties of a staffline segment to validate it as a true segment. We have considered the dataset along with the deformations described in for evaluation purpose. From experimentation we have got encouraging results.
|
|
|
Albert Gordo and Florent Perronnin. 2010. A Bag-of-Pages Approach to Unordered Multi-Page Document Classification. 20th International Conference on Pattern Recognition.1920–1923.
Abstract: We consider the problem of classifying documents containing multiple unordered pages. For this purpose, we propose a novel bag-of-pages document representation. To represent a document, one assigns every page to a prototype in a codebook of pages. This leads to a histogram representation which can then be fed to any discriminative classifier. We also consider several refinements over this initial approach. We show on two challenging datasets that the proposed approach significantly outperforms a baseline system.
|
|
|
Marçal Rusiñol, Farshad Nourbakhsh, Dimosthenis Karatzas, Ernest Valveny and Josep Llados. 2010. Perceptual Image Retrieval by Adding Color Information to the Shape Context Descriptor. 20th International Conference on Pattern Recognition.1594–1597.
Abstract: In this paper we present a method for the retrieval of images in terms of perceptual similarity. Local color information is added to the shape context descriptor in order to obtain an object description integrating both shape and color as visual cues. We use a color naming algorithm in order to represent the color information from a perceptual point of view. The proposed method has been tested in two different applications, an object retrieval scenario based on color sketch queries and a color trademark retrieval problem. Experimental results show that the addition of the color information significantly outperforms the sole use of the shape context descriptor.
|
|
|
Salvatore Tabbone, Oriol Ramos Terrades and S. Barrat. 2008. Histogram of radon transform. A useful descriptor for shape retrieval. 19th International Conference on Pattern Recognition.1–4.
|
|
|
Partha Pratim Roy, Umapada Pal, Josep Llados and F. Kimura. 2008. Convex Hull based Approach for Multi-oriented Character Recognition form Graphical Documents. 19th International Conference on Pattern Recognition.
|
|