|
Klaus Broelemann, Anjan Dutta, Xiaoyi Jiang and Josep Llados. 2013. Plausibility-Graphs for Symbol Spotting in Graphical Documents. 10th IAPR International Workshop on Graphics Recognition.
Abstract: Graph representation of graphical documents often suffers from noise viz. spurious nodes and spurios edges of graph and their discontinuity etc. In general these errors occur during the low-level image processing viz. binarization, skeletonization, vectorization etc. Hierarchical graph representation is a nice and efficient way to solve this kind of problem by hierarchically merging node-node and node-edge depending on the distance.
But the creation of hierarchical graph representing the graphical information often uses hard thresholds on the distance to create the hierarchical nodes (next state) of the lower nodes (or states) of a graph. As a result the representation often loses useful information. This paper introduces plausibilities to the nodes of hierarchical graph as a function of distance and proposes a modified algorithm for matching subgraphs of the hierarchical
graphs. The plausibility-annotated nodes help to improve the performance of the matching algorithm on two hierarchical structures. To show the potential of this approach, we conduct an experiment with the SESYD dataset.
|
|
|
Anjan Dutta, Josep Llados, Horst Bunke and Umapada Pal. 2013. A Product graph based method for dual subgraph matching applied to symbol spotting. 10th IAPR International Workshop on Graphics Recognition.
Abstract: Product graph has been shown to be an efficient way for matching subgraphs. This paper reports the extension of the product graph methodology for subgraph matching applied to symbol spotting in graphical documents. This paper focuses on the two major limitations of the previous version of product graph: (1) Spurious nodes and edges in the graph representation and (2) Inefficient node and edge attributes. To deal with noisy information of vectorized graphical documents, we consider a dual graph representation on the original graph representing the graphical information and the product graph is computed between the dual graphs of the query graphs and the input graph.
The dual graph with redundant edges is helpful for efficient and tolerating encoding of the structural information of the graphical documents. The adjacency matrix of the product graph locates similar path information of two graphs and exponentiating the adjacency matrix finds similar paths of greater lengths. Nodes joining similar paths between two graphs are found by combining different exponentials of adjacency matrices. An experimental investigation reveals that the recall obtained by this approach is quite encouraging.
|
|
|
Lluis Pere de las Heras, Joan Mas, Gemma Sanchez and Ernest Valveny. 2011. Descriptor-based Svm Wall Detector. 9th International Workshop on Graphic Recognition.
Abstract: Architectural floorplans exhibit a large variability in notation. Therefore, segmenting and identifying the elements of any kind of plan becomes a challenging task for approaches based on grouping structural primitives obtained by vectorization. Recently, a patch-based segmentation method working at pixel level and relying on the construction of a visual vocabulary has been proposed showing its adaptability to different notations by automatically learning the visual appearance of the elements in each different notation. In this paper we describe an evolution of this new approach in two directions: firstly we evaluate different features to obtain the description of every patch. Secondly, we train an SVM classifier to obtain the category of every patch instead of constructing a visual vocabulary. These modifications of the method have been tested for wall detection on two datasets of architectural floorplans with different notations and compared with the results obtained with the original approach.
|
|
|
Marçal Rusiñol, V. Poulain d'Andecy, Dimosthenis Karatzas and Josep Llados. 2011. Classification of Administrative Document Images by Logo Identification. In proceedings of 9th IAPR Workshop on Graphic Recognition.
Abstract: This paper is focused on the categorization of administrative document images (such as invoices) based on the recognition of the supplier's graphical logo. Two different methods are proposed, the first one uses a bag-of-visual-words model whereas the second one tries to locate logo images described by the blurred shape model descriptor within documents by a sliding-window technique. Preliminar results are reported with a dataset of real administrative documents.
|
|
|
N. Serrano, L. Tarazon, D. Perez, Oriol Ramos Terrades and S. Juan. 2010. The GIDOC Prototype. 10th International Workshop on Pattern Recognition in Information Systems.82–89.
Abstract: Transcription of handwritten text in (old) documents is an important, time-consuming task for digital libraries. It might be carried out by first processing all document images off-line, and then manually supervising system transcriptions to edit incorrect parts. However, current techniques for automatic page layout analysis, text line detection and handwriting recognition are still far from perfect, and thus post-editing system output is not clearly better than simply ignoring it.
A more effective approach to transcribe old text documents is to follow an interactive- predictive paradigm in which both, the system is guided by the user, and the user is assisted by the system to complete the transcription task as efficiently as possible. Following this approach, a system prototype called GIDOC (Gimp-based Interactive transcription of old text DOCuments) has been developed to provide user-friendly, integrated support for interactive-predictive layout analysis, line detection and handwriting transcription.
GIDOC is designed to work with (large) collections of homogeneous documents, that is, of similar structure and writing styles. They are annotated sequentially, by (par- tially) supervising hypotheses drawn from statistical models that are constantly updated with an increasing number of available annotated documents. And this is done at different annotation levels. For instance, at the level of page layout analysis, GIDOC uses a novel text block detection method in which conventional, memoryless techniques are improved with a “history” model of text block positions. Similarly, at the level of text line image transcription, GIDOC includes a handwriting recognizer which is steadily improved with a growing number of (partially) supervised transcriptions.
|
|
|
T.O. Nguyen, Salvatore Tabbone and Oriol Ramos Terrades. 2008. Symbol Descriptor Based on Shape Context and Vector Model of Information Retrieval. Proceedings of the 8th IAPR International Workshop on Document Analysis Systems,.191–197.
|
|
|
H. Chouaib, Salvatore Tabbone, Oriol Ramos Terrades, F. Cloppet, N. Vincent and A.T. Thierry Paquet. 2008. Sélection de Caractéristiques à partir d'un algorithme génétique et d'une combinaison de classifieurs Adaboost. Colloque International Francophone sur l'Ecrit et le Document.181–186.
|
|
|
T.O. Nguyen, Salvatore Tabbone, Oriol Ramos Terrades and A.T. Thierry. 2008. Proposition d'un descripteur de formes et du modèle vectoriel pour la recherche de symboles. Colloque International Francophone sur l'Ecrit et le Document.79–84.
|
|
|
V.C.Kieu, Alicia Fornes, M. Visani, N.Journet and Anjan Dutta. 2013. The ICDAR/GREC 2013 Music Scores Competition on Staff Removal. 10th IAPR International Workshop on Graphics Recognition.
Abstract: The first competition on music scores that was organized at ICDAR and GREC in 2011 awoke the interest of researchers, who participated both at staff removal and writer identification tasks. In this second edition, we propose a staff removal competition where we simulate old music scores. Thus, we have created a new set of images, which contain noise and 3D distortions. This paper describes the distortion methods, metrics, the participant’s methods and the obtained results.
Keywords: Competition; Music scores; Staff Removal
|
|
|
Marçal Rusiñol, V. Poulain d'Andecy, Dimosthenis Karatzas and Josep Llados. 2013. Classification of Administrative Document Images by Logo Identification. 10th IAPR International Workshop on Graphics Recognition.
Abstract: This paper is focused on the categorization of administrative document images (such as invoices) based on the recognition of the supplier's graphical logo. Two different methods are proposed, the first one uses a bag-of-visual-words model whereas the second one tries to locate logo images described by the blurred shape model descriptor within documents by a sliding-window technique. Preliminar results are reported with a dataset of real administrative documents.
|
|