|
Francisco Cruz and Oriol Ramos Terrades. 2013. Handwritten Line Detection via an EM Algorithm. 12th International Conference on Document Analysis and Recognition.718–722.
Abstract: In this paper we present a handwritten line segmentation method devised to work on documents composed of several paragraphs with multiple line orientations. The method is based on a variation of the EM algorithm for the estimation of a set of regression lines between the connected components that compose the image. We evaluated our method on the ICDAR2009 handwriting segmentation contest dataset with promising results that overcome most of the presented methods. In addition, we prove the usability of the presented method by performing line segmentation on the George Washington database obtaining encouraging results.
|
|
|
Arnau Baro, Carles Badal, Pau Torras and Alicia Fornes. 2022. Handwritten Historical Music Recognition through Sequence-to-Sequence with Attention Mechanism. 3rd International Workshop on Reading Music Systems (WoRMS2021).55–59.
Abstract: Despite decades of research in Optical Music Recognition (OMR), the recognition of old handwritten music scores remains a challenge because of the variabilities in the handwriting styles, paper degradation, lack of standard notation, etc. Therefore, the research in OMR systems adapted to the particularities of old manuscripts is crucial to accelerate the conversion of music scores existing in archives into digital libraries, fostering the dissemination and preservation of our music heritage. In this paper we explore the adaptation of sequence-to-sequence models with attention mechanism (used in translation and handwritten text recognition) and the generation of specific synthetic data for recognizing old music scores. The experimental validation demonstrates that our approach is promising, especially when compared with long short-term memory neural networks.
Keywords: Optical Music Recognition; Digits; Image Classification
|
|
|
Arnau Baro, Alicia Fornes and Carles Badal. 2020. Handwritten Historical Music Recognition by Sequence-to-Sequence with Attention Mechanism. 17th International Conference on Frontiers in Handwriting Recognition.
Abstract: Despite decades of research in Optical Music Recognition (OMR), the recognition of old handwritten music scores remains a challenge because of the variabilities in the handwriting styles, paper degradation, lack of standard notation, etc. Therefore, the research in OMR systems adapted to the particularities of old manuscripts is crucial to accelerate the conversion of music scores existing in archives into digital libraries, fostering the dissemination and preservation of our music heritage. In this paper we explore the adaptation of sequence-to-sequence models with attention mechanism (used in translation and handwritten text recognition) and the generation of specific synthetic data for recognizing old music scores. The experimental validation demonstrates that our approach is promising, especially when compared with long short-term memory neural networks.
|
|
|
V. Chapaprieta and Ernest Valveny. 2001. Handwritten Digit Recognition Using Point Distribution Models..
|
|
|
Volkmar Frinken, Andreas Fischer and Carlos David Martinez Hinarejos. 2013. Handwriting Recognition in Historical Documents using Very Large Vocabularies. 2nd International Workshop on Historical Document Imaging and Processing.67–72.
Abstract: Language models are used in automatic transcription system to resolve ambiguities. This is done by limiting the vocabulary of words that can be recognized as well as estimating the n-gram probability of the words in the given text. In the context of historical documents, a non-unified spelling and the limited amount of written text pose a substantial problem for the selection of the recognizable vocabulary as well as the computation of the word probabilities. In this paper we propose for the transcription of historical Spanish text to keep the corpus for the n-gram limited to a sample of the target text, but expand the vocabulary with words gathered from external resources. We analyze the performance of such a transcription system with different sizes of external vocabularies and demonstrate the applicability and the significant increase in recognition accuracy of using up to 300 thousand external words.
|
|
|
Juan Ignacio Toledo, Sounak Dey, Alicia Fornes and Josep Llados. 2017. Handwriting Recognition by Attribute embedding and Recurrent Neural Networks. 14th International Conference on Document Analysis and Recognition.1038–1043.
Abstract: Handwriting recognition consists in obtaining the transcription of a text image. Recent word spotting methods based on attribute embedding have shown good performance when recognizing words. However, they are holistic methods in the sense that they recognize the word as a whole (i.e. they find the closest word in the lexicon to the word image). Consequently,
these kinds of approaches are not able to deal with out of vocabulary words, which are common in historical manuscripts. Also, they cannot be extended to recognize text lines. In order to address these issues, in this paper we propose a handwriting recognition method that adapts the attribute embedding to sequence learning. Concretely, the method learns the attribute embedding of patches of word images with a convolutional neural network. Then, these embeddings are presented as a sequence to a recurrent neural network that produces the transcription. We obtain promising results even without the use of any kind of dictionary or language model
|
|
|
Ernest Valveny and Enric Marti. 2000. Hand-drawn symbol recognition in graphic documents using deformable template matching and a Bayesian framework. Proc. 15th Int Pattern Recognition Conf.239–242.
Abstract: Hand-drawn symbols can take many different and distorted shapes from their ideal representation. Then, very flexible methods are needed to be able to handle unconstrained drawings. We propose here to extend our previous work in hand-drawn symbol recognition based on a Bayesian framework and deformable template matching. This approach gets flexibility enough to fit distorted shapes in the drawing while keeping fidelity to the ideal shape of the symbol. In this work, we define the similarity measure between an image and a symbol based on the distance from every pixel in the image to the lines in the symbol. Matching is carried out using an implementation of the EM algorithm. Thus, we can improve recognition rates and computation time with respect to our previous formulation based on a simulated annealing algorithm.
|
|
|
Alicia Fornes, Sergio Escalera, Josep Llados, Gemma Sanchez and Joan Mas. 2008. Hand Drawn Symbol Recognition by Blurred Shape Model Descriptor and a Multiclass Classifier. In W. Liu, J.L., J.M. Ogier, ed. Graphics Recognition: Recent Advances and New Opportunities.30–40. (LNCS.)
|
|
|
Josep Llados, Jaime Lopez-Krahe and Enric Marti. 1996. Hand drawn document understanding using the straight line Hough transform and graph matching. Proceedings of the 13th International Pattern Recognition Conference (ICPR’96). Vienna , Austria, 497–501.
Abstract: This paper presents a system to understand hand drawn architectural drawings in a CAD environment. The procedure is to identify in a floor plan the building elements, stored in a library of patterns, and their spatial relationships. The vectorized input document and the patterns to recognize are represented by attributed graphs. To recognize the patterns as such, we apply a structural approach based on subgraph isomorphism techniques. In spite of their value, graph matching techniques do not recognize adequately those building elements characterized by hatching patterns, i.e. walls. Here we focus on the recognition of hatching patterns and develop a straight line Hough transform based method in order to detect the regions filled in with parallel straight fines. This allows not only to recognize filling patterns, but it actually reduces the computational load associated with the subgraph isomorphism computation. The result is that the document can be redrawn by editing all the patterns recognized
|
|
|
Ricard Coll, Alicia Fornes and Josep Llados. 2009. Graphological Analysis of Handwritten Text Documents for Human Resources Recruitment. 10th International Conference on Document Analysis and Recognition.1081–1085.
Abstract: The use of graphology in recruitment processes has become a popular tool in many human resources companies. This paper presents a model that links features from handwritten images to a number of personality characteristics used to measure applicant aptitudes for the job in a particular hiring scenario. In particular we propose a model of measuring active personality and leadership of the writer. Graphological features that define such a profile are measured in terms of document and script attributes like layout configuration, letter size, shape, slant and skew angle of lines, etc. After the extraction, data is classified using a neural network. An experimental framework with real samples has been constructed to illustrate the performance of the approach.
|
|