|
Sergi Garcia Bordils and 6 others. 2022. Read While You Drive-Multilingual Text Tracking on the Road. 15th IAPR International workshop on document analysis systems.756–770. (LNCS.)
Abstract: Visual data obtained during driving scenarios usually contain large amounts of text that conveys semantic information necessary to analyse the urban environment and is integral to the traffic control plan. Yet, research on autonomous driving or driver assistance systems typically ignores this information. To advance research in this direction, we present RoadText-3K, a large driving video dataset with fully annotated text. RoadText-3K is three times bigger than its predecessor and contains data from varied geographical locations, unconstrained driving conditions and multiple languages and scripts. We offer a comprehensive analysis of tracking by detection and detection by tracking methods exploring the limits of state-of-the-art text detection. Finally, we propose a new end-to-end trainable tracking model that yields state-of-the-art results on this challenging dataset. Our experiments demonstrate the complexity and variability of RoadText-3K and establish a new, realistic benchmark for scene text tracking in the wild.
|
|
|
Clement Guerin, Christophe Rigaud, Karell Bertet, Jean-Christophe Burie, Arnaud Revel and Jean-Marc Ogier. 2014. Réduction de l’espace de recherche pour les personnages de bandes dessinées. 19th National Congress Reconnaissance de Formes et l'Intelligence Artificielle.
Abstract: Les bandes dessinées représentent un patrimoine culturel important dans de nombreux pays et leur numérisation massive offre la possibilité d'effectuer des recherches dans le contenu des images. À ce jour, ce sont principalement les structures des pages et leurs contenus textuels qui ont été étudiés, peu de travaux portent sur le contenu graphique. Nous proposons de nous appuyer sur des éléments déjà étudiés tels que la position des cases et des bulles, pour réduire l'espace de recherche et localiser les personnages en fonction de la queue des bulles. L'évaluation de nos différentes contributions à partir de la base eBDtheque montre un taux de détection des queues de bulle de 81.2%, de localisation des personnages allant jusqu'à 85% et un gain d'espace de recherche de plus de 50%.
Keywords: contextual search; document analysis; comics characters
|
|
|
Oriol Ramos Terrades and Ernest Valveny. 2003. Radon Transform for Lineal Symbol Representation.
|
|
|
Suman Ghosh and Ernest Valveny. 2017. R-PHOC: Segmentation-Free Word Spotting using CNN. 14th International Conference on Document Analysis and Recognition.
Abstract: arXiv:1707.01294
This paper proposes a region based convolutional neural network for segmentation-free word spotting. Our network takes as input an image and a set of word candidate bound- ing boxes and embeds all bounding boxes into an embedding space, where word spotting can be casted as a simple nearest neighbour search between the query representation and each of the candidate bounding boxes. We make use of PHOC embedding as it has previously achieved significant success in segmentation- based word spotting. Word candidates are generated using a simple procedure based on grouping connected components using some spatial constraints. Experiments show that R-PHOC which operates on images directly can improve the current state-of- the-art in the standard GW dataset and performs as good as PHOCNET in some cases designed for segmentation based word spotting.
Keywords: Convolutional neural network; Image segmentation; Artificial neural network; Nearest neighbor search
|
|
|
Partha Pratim Roy, Umapada Pal and Josep Llados. 2010. Query Driven Word Retrieval in Graphical Documents. 9th IAPR International Workshop on Document Analysis Systems.191–198.
Abstract: In this paper, we present an approach towards the retrieval of words from graphical document images. In graphical documents, due to presence of multi-oriented characters in non-structured layout, word indexing is a challenging task. The proposed approach uses recognition results of individual components to form character pairs with the neighboring components. An indexing scheme is designed to store the spatial description of components and to access them efficiently. Given a query text word (ascii/unicode format), the character pairs present in it are searched in the document. Next the retrieved character pairs are linked sequentially to form character string. Dynamic programming is applied to find different instances of query words. A string edit distance is used here to match the query word as the objective function. Recognition of multi-scale and multi-oriented character component is done using Support Vector Machine classifier. To consider multi-oriented character strings the features used in the SVM are invariant to character orientation. Experimental results show that the method is efficient to locate a query word from multi-oriented text in graphical documents.
|
|
|
Suman Ghosh and Ernest Valveny. 2015. Query by String word spotting based on character bi-gram indexing. 13th International Conference on Document Analysis and Recognition ICDAR2015.881–885.
Abstract: In this paper we propose a segmentation-free query by string word spotting method. Both the documents and query strings are encoded using a recently proposed word representa- tion that projects images and strings into a common atribute space based on a pyramidal histogram of characters(PHOC). These attribute models are learned using linear SVMs over the Fisher Vector representation of the images along with the PHOC labels of the corresponding strings. In order to search through the whole page, document regions are indexed per character bi- gram using a similar attribute representation. On top of that, we propose an integral image representation of the document using a simplified version of the attribute model for efficient computation. Finally we introduce a re-ranking step in order to boost retrieval performance. We show state-of-the-art results for segmentation-free query by string word spotting in single-writer and multi-writer standard datasets
|
|
|
Anjan Dutta, Pau Riba, Josep Llados and Alicia Fornes. 2017. Pyramidal Stochastic Graphlet Embedding for Document Pattern Classification. 14th International Conference on Document Analysis and Recognition.33–38.
Abstract: Document pattern classification methods using graphs have received a lot of attention because of its robust representation paradigm and rich theoretical background. However, the way of preserving and the process for delineating documents with graphs introduce noise in the rendition of underlying data, which creates instability in the graph representation. To deal with such unreliability in representation, in this paper, we propose Pyramidal Stochastic Graphlet Embedding (PSGE).
Given a graph representing a document pattern, our method first computes a graph pyramid by successively reducing the base graph. Once the graph pyramid is computed, we apply Stochastic Graphlet Embedding (SGE) for each level of the pyramid and combine their embedded representation to obtain a global delineation of the original graph. The consideration of pyramid of graphs rather than just a base graph extends the representational power of the graph embedding, which reduces the instability caused due to noise and distortion. When plugged with support
vector machine, our proposed PSGE has outperformed the state-of-the-art results in recognition of handwritten words as well as graphical symbols
Keywords: graph embedding; hierarchical graph representation; graph clustering; stochastic graphlet embedding; graph classification
|
|
|
Fernando Vilariño. 2019. Public Libraries Exploring how technology transforms the cultural experience of people. Workshop on Social Impact of AI. Open Living Lab Days Conference..
|
|
|
T.O. Nguyen, Salvatore Tabbone, Oriol Ramos Terrades and A.T. Thierry. 2008. Proposition d'un descripteur de formes et du modèle vectoriel pour la recherche de symboles. Colloque International Francophone sur l'Ecrit et le Document.79–84.
|
|
|
Anjan Dutta, Josep Llados, Horst Bunke and Umapada Pal. 2018. Product graph-based higher order contextual similarities for inexact subgraph matching. PR, 76, 596–611.
Abstract: Many algorithms formulate graph matching as an optimization of an objective function of pairwise quantification of nodes and edges of two graphs to be matched. Pairwise measurements usually consider local attributes but disregard contextual information involved in graph structures. We address this issue by proposing contextual similarities between pairs of nodes. This is done by considering the tensor product graph (TPG) of two graphs to be matched, where each node is an ordered pair of nodes of the operand graphs. Contextual similarities between a pair of nodes are computed by accumulating weighted walks (normalized pairwise similarities) terminating at the corresponding paired node in TPG. Once the contextual similarities are obtained, we formulate subgraph matching as a node and edge selection problem in TPG. We use contextual similarities to construct an objective function and optimize it with a linear programming approach. Since random walk formulation through TPG takes into account higher order information, it is not a surprise that we obtain more reliable similarities and better discrimination among the nodes and edges. Experimental results shown on synthetic as well as real benchmarks illustrate that higher order contextual similarities increase discriminating power and allow one to find approximate solutions to the subgraph matching problem.
|
|