|
T.O. Nguyen, Salvatore Tabbone and Oriol Ramos Terrades. 2008. Symbol Descriptor Based on Shape Context and Vector Model of Information Retrieval. Proceedings of the 8th IAPR International Workshop on Document Analysis Systems,.191–197.
|
|
|
Alicia Fornes, Sergio Escalera, Josep Llados and Ernest Valveny. 2010. Symbol Classification using Dynamic Aligned Shape Descriptor. 20th International Conference on Pattern Recognition.1957–1960.
Abstract: Shape representation is a difficult task because of several symbol distortions, such as occlusions, elastic deformations, gaps or noise. In this paper, we propose a new descriptor and distance computation for coping with the problem of symbol recognition in the domain of Graphical Document Image Analysis. The proposed D-Shape descriptor encodes the arrangement information of object parts in a circular structure, allowing different levels of distortion. The classification is performed using a cyclic Dynamic Time Warping based method, allowing distortions and rotation. The methodology has been validated on different data sets, showing very high recognition rates.
|
|
|
Ayan Banerjee, Sanket Biswas, Josep Llados and Umapada Pal. 2023. SwinDocSegmenter: An End-to-End Unified Domain Adaptive Transformer for Document Instance Segmentation. 17th International Conference on Document Analysis and Recognition.307–325. (LNCS.)
Abstract: Instance-level segmentation of documents consists in assigning a class-aware and instance-aware label to each pixel of the image. It is a key step in document parsing for their understanding. In this paper, we present a unified transformer encoder-decoder architecture for en-to-end instance segmentation of complex layouts in document images. The method adapts a contrastive training with a mixed query selection for anchor initialization in the decoder. Later on, it performs a dot product between the obtained query embeddings and the pixel embedding map (coming from the encoder) for semantic reasoning. Extensive experimentation on competitive benchmarks like PubLayNet, PRIMA, Historical Japanese (HJ), and TableBank demonstrate that our model with SwinL backbone achieves better segmentation performance than the existing state-of-the-art approaches with the average precision of 93.72, 54.39, 84.65 and 98.04 respectively under one billion parameters. The code is made publicly available at: github.com/ayanban011/SwinDocSegmenter .
|
|
|
S. Chanda, Oriol Ramos Terrades and Umapada Pal. 2007. SVM Based Scheme for Thai and English Script Identification. 9th International Conference on Document Analysis and Recognition.551–555.
|
|
|
Lluis Gomez, Marçal Rusiñol, Ali Furkan Biten and Dimosthenis Karatzas. 2018. Subtitulació automàtica d'imatges. Estat de l'art i limitacions en el context arxivístic. Jornades Imatge i Recerca.
|
|
|
Muhammad Muzzamil Luqman, Jean-Yves Ramel, Josep Llados and Thierry Brouard. 2011. Subgraph Spotting Through Explicit Graph Embedding: An Application to Content Spotting in Graphic Document Images. 11th International Conference on Document Analysis and Recognition.870–874.
Abstract: We present a method for spotting a subgraph in a graph repository. Subgraph spotting is a very interesting research problem for various application domains where the use of a relational data structure is mandatory. Our proposed method accomplishes subgraph spotting through graph embedding. We achieve automatic indexation of a graph repository during off-line learning phase, where we (i) break the graphs into 2-node sub graphs (a.k.a. cliques of order 2), which are primitive building-blocks of a graph, (ii) embed the 2-node sub graphs into feature vectors by employing our recently proposed explicit graph embedding technique, (iii) cluster the feature vectors in classes by employing a classic agglomerative clustering technique, (iv) build an index for the graph repository and (v) learn a Bayesian network classifier. The subgraph spotting is achieved during the on-line querying phase, where we (i) break the query graph into 2-node sub graphs, (ii) embed them into feature vectors, (iii) employ the Bayesian network classifier for classifying the query 2-node sub graphs and (iv) retrieve the respective graphs by looking-up in the index of the graph repository. The graphs containing all query 2-node sub graphs form the set of result graphs for the query. Finally, we employ the adjacency matrix of each result graph along with a score function, for spotting the query graph in it. The proposed subgraph spotting method is equally applicable to a wide range of domains, offering ease of query by example (QBE) and granularity of focused retrieval. Experimental results are presented for graphs generated from two repositories of electronic and architectural document images.
|
|
|
Thanh Nam Le and 10 others. 2018. Subgraph spotting in graph representations of comic book images. PRL, 112, 118–124.
Abstract: Graph-based representations are the most powerful data structures for extracting, representing and preserving the structural information of underlying data. Subgraph spotting is an interesting research problem, especially for studying and investigating the structural information based content-based image retrieval (CBIR) and query by example (QBE) in image databases. In this paper we address the problem of lack of freely available ground-truthed datasets for subgraph spotting and present a new dataset for subgraph spotting in graph representations of comic book images (SSGCI) with its ground-truth and evaluation protocol. Experimental results of two state-of-the-art methods of subgraph spotting are presented on the new SSGCI dataset.
Keywords: Attributed graph; Region adjacency graph; Graph matching; Graph isomorphism; Subgraph isomorphism; Subgraph spotting; Graph indexing; Graph retrieval; Query by example; Dataset and comic book images
|
|
|
Francisco Alvaro, Francisco Cruz, Joan Andreu Sanchez, Oriol Ramos Terrades and Jose Miguel Benedi. 2015. Structure Detection and Segmentation of Documents Using 2D Stochastic Context-Free Grammars. NEUCOM, 150(A), 147–154.
Abstract: In this paper we dene a bidimensional extension of Stochastic Context-Free Grammars for structure detection and segmentation of images of documents.
Two sets of text classication features are used to perform an initial classication of each zone of the page. Then, the document segmentation is obtained as the most likely hypothesis according to a stochastic grammar. We used a dataset of historical marriage license books to validate this approach. We also tested several inference algorithms for Probabilistic Graphical Models
and the results showed that the proposed grammatical model outperformed
the other methods. Furthermore, grammars also provide the document structure
along with its segmentation.
Keywords: document image analysis; stochastic context-free grammars; text classication features
|
|
|
Josep Llados, Horst Bunke and Enric Marti. 1996. Structural Recognition of hand drawn floor plans. VI National Symposium on Pattern Recognition and Image Analysis. Cordoba.
Abstract: A system to recognize hand drawn architectural drawings in a CAD environment has been deve- loped. In this paper we focus on its high level interpretation module. To interpret a floor plan, the system must identify several building elements, whose description is stored in a library of pat- terns, as well as their spatial relationships. We propose a structural approach based on subgraph isomorphism techniques to obtain a high-level interpretation of the document. The vectorized input document and the patterns to be recognized are represented by attributed graphs. Discrete relaxation techniques (AC4 algorithm) have been applied to develop the matching algorithm. The process has been divided in three steps: node labeling, local consistency and global consistency verification. The hand drawn creation causes disturbed line drawings with several accuracy errors, which must be taken into account. Here we have identified them and the AC4 algorithm has been adapted to manage them.
Keywords: Rotational Symmetry; Reflectional Symmetry; String Matching.
|
|
|
Anjan Dutta and Hichem Sahbi. 2018. Stochastic Graphlet Embedding. TNNLS, 1–14.
Abstract: Graph-based methods are known to be successful in many machine learning and pattern classification tasks. These methods consider semi-structured data as graphs where nodes correspond to primitives (parts, interest points, segments,
etc.) and edges characterize the relationships between these primitives. However, these non-vectorial graph data cannot be straightforwardly plugged into off-the-shelf machine learning algorithms without a preliminary step of – explicit/implicit –graph vectorization and embedding. This embedding process
should be resilient to intra-class graph variations while being highly discriminant. In this paper, we propose a novel high-order stochastic graphlet embedding (SGE) that maps graphs into vector spaces. Our main contribution includes a new stochastic search procedure that efficiently parses a given graph and extracts/samples unlimitedly high-order graphlets. We consider
these graphlets, with increasing orders, to model local primitives as well as their increasingly complex interactions. In order to build our graph representation, we measure the distribution of these graphlets into a given graph, using particular hash functions that efficiently assign sampled graphlets into isomorphic sets with a very low probability of collision. When
combined with maximum margin classifiers, these graphlet-based representations have positive impact on the performance of pattern comparison and recognition as corroborated through extensive experiments using standard benchmark databases.
Keywords: Stochastic graphlets; Graph embedding; Graph classification; Graph hashing; Betweenness centrality
|
|