|
Albert Berenguel, Oriol Ramos Terrades, Josep Llados and Cristina Cañero. 2017. e-Counterfeit: a mobile-server platform for document counterfeit detection. 14th IAPR International Conference on Document Analysis and Recognition.
Abstract: This paper presents a novel application to detect counterfeit identity documents forged by a scan-printing operation. Texture analysis approaches are proposed to extract validation features from security background that is usually printed in documents as IDs or banknotes. The main contribution of this work is the end-to-end mobile-server architecture, which provides a service for non-expert users and therefore can be used in several scenarios. The system also provides a crowdsourcing mode so labeled images can be gathered, generating databases for incremental training of the algorithms.
|
|
|
Alicia Fornes and 6 others. 2017. ICDAR2017 Competition on Information Extraction in Historical Handwritten Records. 14th International Conference on Document Analysis and Recognition.1389–1394.
Abstract: The extraction of relevant information from historical handwritten document collections is one of the key steps in order to make these manuscripts available for access and searches. In this competition, the goal is to detect the named entities and assign each of them a semantic category, and therefore, to simulate the filling in of a knowledge database. This paper describes the dataset, the tasks, the evaluation metrics, the participants methods and the results.
|
|
|
Pau Riba, Anjan Dutta, Josep Llados, Alicia Fornes and Sounak Dey. 2017. Improving Information Retrieval in Multiwriter Scenario by Exploiting the Similarity Graph of Document Terms. 14th International Conference on Document Analysis and Recognition.475–480.
Abstract: Information Retrieval (IR) is the activity of obtaining information resources relevant to a questioned information. It usually retrieves a set of objects ranked according to the relevancy to the needed fact. In document analysis, information retrieval receives a lot of attention in terms of symbol and word spotting. However, through decades the community mostly focused either on printed or on single writer scenario, where the
state-of-the-art results have achieved reasonable performance on the available datasets. Nevertheless, the existing algorithms do not perform accordingly on multiwriter scenario. A graph representing relations between a set of objects is a structure where each node delineates an individual element and the similarity between them is represented as a weight on the connecting edge. In this paper, we explore different analytics of graphs constructed from words or graphical symbols, such as diffusion, shortest path, etc. to improve the performance of information retrieval methods in multiwriter scenario
Keywords: document terms; information retrieval; affinity graph; graph of document terms; multiwriter; graph diffusion
|
|
|
Anjan Dutta, Pau Riba, Josep Llados and Alicia Fornes. 2017. Pyramidal Stochastic Graphlet Embedding for Document Pattern Classification. 14th International Conference on Document Analysis and Recognition.33–38.
Abstract: Document pattern classification methods using graphs have received a lot of attention because of its robust representation paradigm and rich theoretical background. However, the way of preserving and the process for delineating documents with graphs introduce noise in the rendition of underlying data, which creates instability in the graph representation. To deal with such unreliability in representation, in this paper, we propose Pyramidal Stochastic Graphlet Embedding (PSGE).
Given a graph representing a document pattern, our method first computes a graph pyramid by successively reducing the base graph. Once the graph pyramid is computed, we apply Stochastic Graphlet Embedding (SGE) for each level of the pyramid and combine their embedded representation to obtain a global delineation of the original graph. The consideration of pyramid of graphs rather than just a base graph extends the representational power of the graph embedding, which reduces the instability caused due to noise and distortion. When plugged with support
vector machine, our proposed PSGE has outperformed the state-of-the-art results in recognition of handwritten words as well as graphical symbols
Keywords: graph embedding; hierarchical graph representation; graph clustering; stochastic graphlet embedding; graph classification
|
|
|
Juan Ignacio Toledo, Sounak Dey, Alicia Fornes and Josep Llados. 2017. Handwriting Recognition by Attribute embedding and Recurrent Neural Networks. 14th International Conference on Document Analysis and Recognition.1038–1043.
Abstract: Handwriting recognition consists in obtaining the transcription of a text image. Recent word spotting methods based on attribute embedding have shown good performance when recognizing words. However, they are holistic methods in the sense that they recognize the word as a whole (i.e. they find the closest word in the lexicon to the word image). Consequently,
these kinds of approaches are not able to deal with out of vocabulary words, which are common in historical manuscripts. Also, they cannot be extended to recognize text lines. In order to address these issues, in this paper we propose a handwriting recognition method that adapts the attribute embedding to sequence learning. Concretely, the method learns the attribute embedding of patches of word images with a convolutional neural network. Then, these embeddings are presented as a sequence to a recurrent neural network that produces the transcription. We obtain promising results even without the use of any kind of dictionary or language model
|
|
|
Arnau Baro, Pau Riba, Jorge Calvo-Zaragoza and Alicia Fornes. 2017. Optical Music Recognition by Recurrent Neural Networks. 14th IAPR International Workshop on Graphics Recognition.25–26.
Abstract: Optical Music Recognition is the task of transcribing a music score into a machine readable format. Many music scores are written in a single staff, and therefore, they could be treated as a sequence. Therefore, this work explores the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for reading the music score sequentially, where the LSTM helps in keeping the context. For training, we have used a synthetic dataset of more than 40000 images, labeled at primitive level
Keywords: Optical Music Recognition; Recurrent Neural Network; Long Short-Term Memory
|
|
|
Sounak Dey, Anjan Dutta, Josep Llados, Alicia Fornes and Umapada Pal. 2017. Shallow Neural Network Model for Hand-drawn Symbol Recognition in Multi-Writer Scenario. 14th International Conference on Document Analysis and Recognition.31–32.
Abstract: One of the main challenges in hand drawn symbol recognition is the variability among symbols because of the different writer styles. In this paper, we present and discuss some results recognizing hand-drawn symbols with a shallow neural network. A neural network model inspired from the LeNet architecture has been used to achieve state-of-the-art results with
very less training data, which is very unlikely to the data hungry deep neural network. From the results, it has become evident that the neural network architectures can efficiently describe and recognize hand drawn symbols from different writers and can model the inter author aberration
|
|
|
Pau Riba, Anjan Dutta, Josep Llados and Alicia Fornes. 2017. Graph-based deep learning for graphics classification. 14th International Conference on Document Analysis and Recognition.29–30.
Abstract: Graph-based representations are a common way to deal with graphics recognition problems. However, previous works were mainly focused on developing learning-free techniques. The success of deep learning frameworks have proved that learning is a powerful tool to solve many problems, however it is not straightforward to extend these methodologies to non euclidean data such as graphs. On the other hand, graphs are a good representational structure for graphical entities. In this work, we present some deep learning techniques that have been proposed in the literature for graph-based representations and
we show how they can be used in graphics recognition problems
|
|
|
Adria Rico and Alicia Fornes. 2017. Camera-based Optical Music Recognition using a Convolutional Neural Network. 12th IAPR International Workshop on Graphics Recognition.27–28.
Abstract: Optical Music Recognition (OMR) consists in recognizing images of music scores. Contrary to expectation, the current OMR systems usually fail when recognizing images of scores captured by digital cameras and smartphones. In this work, we propose a camera-based OMR system based on Convolutional Neural Networks, showing promising preliminary results
Keywords: optical music recognition; document analysis; convolutional neural network; deep learning
|
|
|
Oriol Vicente, Alicia Fornes and Ramon Valdes. 2017. La Xarxa d Humanitats Digitals de la UABCie: una estructura inteligente para la investigación y la transferencia en Humanidades. 3rd Congreso Internacional de Humanidades Digitales Hispánicas. Sociedad Internacional.281–383.
|
|