|
David Aldavert, Marçal Rusiñol and Ricardo Toledo. 2017. Automatic Static/Variable Content Separation in Administrative Document Images. 14th International Conference on Document Analysis and Recognition.
Abstract: In this paper we present an automatic method for separating static and variable content from administrative document images. An alignment approach is able to unsupervisedly build probabilistic templates from a set of examples of the same document kind. Such templates define which is the likelihood of every pixel of being either static or variable content. In the extraction step, the same alignment technique is used to match
an incoming image with the template and to locate the positions where variable fields appear. We validate our approach on the public NIST Structured Tax Forms Dataset.
|
|
|
Raul Gomez, Lluis Gomez, Jaume Gibert and Dimosthenis Karatzas. 2018. Learning to Learn from Web Data through Deep Semantic Embeddings. 15th European Conference on Computer Vision Workshops.514–529. (LNCS.)
Abstract: In this paper we propose to learn a multimodal image and text embedding from Web and Social Media data, aiming to leverage the semantic knowledge learnt in the text domain and transfer it to a visual model for semantic image retrieval. We demonstrate that the pipeline can learn from images with associated text without supervision and perform a thourough analysis of five different text embeddings in three different benchmarks. We show that the embeddings learnt with Web and Social Media data have competitive performances over supervised methods in the text based image retrieval task, and we clearly outperform state of the art in the MIRFlickr dataset when training in the target data. Further we demonstrate how semantic multimodal image retrieval can be performed using the learnt embeddings, going beyond classical instance-level retrieval problems. Finally, we present a new dataset, InstaCities1M, composed by Instagram images and their associated texts that can be used for fair comparison of image-text embeddings.
|
|
|
Arka Ujjal Dey, Suman Ghosh and Ernest Valveny. 2018. Don't only Feel Read: Using Scene text to understand advertisements. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.
Abstract: We propose a framework for automated classification of Advertisement Images, using not just Visual features but also Textual cues extracted from embedded text. Our approach takes inspiration from the assumption that Ad images contain meaningful textual content, that can provide discriminative semantic interpretetion, and can thus aid in classifcation tasks. To this end, we develop a framework using off-the-shelf components, and demonstrate the effectiveness of Textual cues in semantic Classfication tasks.
|
|
|
Leonardo Galteri and 7 others. 2017. Reading Text in the Wild from Compressed Images. 1st International workshop on Egocentric Perception, Interaction and Computing.
Abstract: Reading text in the wild is gaining attention in the computer vision community. Images captured in the wild are almost always compressed to varying degrees, depending on application context, and this compression introduces artifacts
that distort image content into the captured images. In this paper we investigate the impact these compression artifacts have on text localization and recognition in the wild. We also propose a deep Convolutional Neural Network (CNN) that can eliminate text-specific compression artifacts and which leads to an improvement in text recognition. Experimental results on the ICDAR-Challenge4 dataset demonstrate that compression artifacts have a significant
impact on text localization and recognition and that our approach yields an improvement in both – especially at high compression rates.
|
|
|
N. Nayef and 14 others. 2017. ICDAR2017 Robust Reading Challenge on Multi-Lingual Scene Text Detection and Script Identification – RRC-MLT. 14th International Conference on Document Analysis and Recognition.1454–1459.
Abstract: Text detection and recognition in a natural environment are key components of many applications, ranging from business card digitization to shop indexation in a street. This competition aims at assessing the ability of state-of-the-art methods to detect Multi-Lingual Text (MLT) in scene images, such as in contents gathered from the Internet media and in modern cities where multiple cultures live and communicate together. This competition is an extension of the Robust Reading Competition (RRC) which has been held since 2003 both in ICDAR and in an online context. The proposed competition is presented as a new challenge of the RRC. The dataset built for this challenge largely extends the previous RRC editions in many aspects: the multi-lingual text, the size of the dataset, the multi-oriented text, the wide variety of scenes. The dataset is comprised of 18,000 images which contain text belonging to 9 languages. The challenge is comprised of three tasks related to text detection and script classification. We have received a total of 16 participations from the research and industrial communities. This paper presents the dataset, the tasks and the findings of this RRC-MLT challenge.
|
|
|
Albert Berenguel, Oriol Ramos Terrades, Josep Llados and Cristina Cañero. 2017. e-Counterfeit: a mobile-server platform for document counterfeit detection. 14th IAPR International Conference on Document Analysis and Recognition.
Abstract: This paper presents a novel application to detect counterfeit identity documents forged by a scan-printing operation. Texture analysis approaches are proposed to extract validation features from security background that is usually printed in documents as IDs or banknotes. The main contribution of this work is the end-to-end mobile-server architecture, which provides a service for non-expert users and therefore can be used in several scenarios. The system also provides a crowdsourcing mode so labeled images can be gathered, generating databases for incremental training of the algorithms.
|
|
|
Antonio Lopez, Atsushi Imiya, Tomas Pajdla and Jose Manuel Alvarez. Computer Vision in Vehicle Technology: Land, Sea & Air.
Abstract: A unified view of the use of computer vision technology for different types of vehicles
Computer Vision in Vehicle Technology focuses on computer vision as on-board technology, bringing together fields of research where computer vision is progressively penetrating: the automotive sector, unmanned aerial and underwater vehicles. It also serves as a reference for researchers of current developments and challenges in areas of the application of computer vision, involving vehicles such as advanced driver assistance (pedestrian detection, lane departure warning, traffic sign recognition), autonomous driving and robot navigation (with visual simultaneous localization and mapping) or unmanned aerial vehicles (obstacle avoidance, landscape classification and mapping, fire risk assessment).
The overall role of computer vision for the navigation of different vehicles, as well as technology to address on-board applications, is analysed.
|
|
|
Alicia Fornes and 6 others. 2017. ICDAR2017 Competition on Information Extraction in Historical Handwritten Records. 14th International Conference on Document Analysis and Recognition.1389–1394.
Abstract: The extraction of relevant information from historical handwritten document collections is one of the key steps in order to make these manuscripts available for access and searches. In this competition, the goal is to detect the named entities and assign each of them a semantic category, and therefore, to simulate the filling in of a knowledge database. This paper describes the dataset, the tasks, the evaluation metrics, the participants methods and the results.
|
|
|
Pau Riba, Anjan Dutta, Josep Llados, Alicia Fornes and Sounak Dey. 2017. Improving Information Retrieval in Multiwriter Scenario by Exploiting the Similarity Graph of Document Terms. 14th International Conference on Document Analysis and Recognition.475–480.
Abstract: Information Retrieval (IR) is the activity of obtaining information resources relevant to a questioned information. It usually retrieves a set of objects ranked according to the relevancy to the needed fact. In document analysis, information retrieval receives a lot of attention in terms of symbol and word spotting. However, through decades the community mostly focused either on printed or on single writer scenario, where the
state-of-the-art results have achieved reasonable performance on the available datasets. Nevertheless, the existing algorithms do not perform accordingly on multiwriter scenario. A graph representing relations between a set of objects is a structure where each node delineates an individual element and the similarity between them is represented as a weight on the connecting edge. In this paper, we explore different analytics of graphs constructed from words or graphical symbols, such as diffusion, shortest path, etc. to improve the performance of information retrieval methods in multiwriter scenario
Keywords: document terms; information retrieval; affinity graph; graph of document terms; multiwriter; graph diffusion
|
|
|
Anjan Dutta, Pau Riba, Josep Llados and Alicia Fornes. 2017. Pyramidal Stochastic Graphlet Embedding for Document Pattern Classification. 14th International Conference on Document Analysis and Recognition.33–38.
Abstract: Document pattern classification methods using graphs have received a lot of attention because of its robust representation paradigm and rich theoretical background. However, the way of preserving and the process for delineating documents with graphs introduce noise in the rendition of underlying data, which creates instability in the graph representation. To deal with such unreliability in representation, in this paper, we propose Pyramidal Stochastic Graphlet Embedding (PSGE).
Given a graph representing a document pattern, our method first computes a graph pyramid by successively reducing the base graph. Once the graph pyramid is computed, we apply Stochastic Graphlet Embedding (SGE) for each level of the pyramid and combine their embedded representation to obtain a global delineation of the original graph. The consideration of pyramid of graphs rather than just a base graph extends the representational power of the graph embedding, which reduces the instability caused due to noise and distortion. When plugged with support
vector machine, our proposed PSGE has outperformed the state-of-the-art results in recognition of handwritten words as well as graphical symbols
Keywords: graph embedding; hierarchical graph representation; graph clustering; stochastic graphlet embedding; graph classification
|
|