|
Pau Torras, Mohamed Ali Souibgui, Jialuo Chen and Alicia Fornes. 2021. A Transcription Is All You Need: Learning to Align through Attention. 14th IAPR International Workshop on Graphics Recognition.141–146. (LNCS.)
Abstract: Historical ciphered manuscripts are a type of document where graphical symbols are used to encrypt their content instead of regular text. Nowadays, expert transcriptions can be found in libraries alongside the corresponding manuscript images. However, those transcriptions are not aligned, so these are barely usable for training deep learning-based recognition methods. To solve this issue, we propose a method to align each symbol in the transcript of an image with its visual representation by using an attention-based Sequence to Sequence (Seq2Seq) model. The core idea is that, by learning to recognise symbols sequence within a cipher line image, the model also identifies their position implicitly through an attention mechanism. Thus, the resulting symbol segmentation can be later used for training algorithms. The experimental evaluation shows that this method is promising, especially taking into account the small size of the cipher dataset.
|
|
|
Lluis Gomez, Marçal Rusiñol and Dimosthenis Karatzas. 2017. LSDE: Levenshtein Space Deep Embedding for Query-by-string Word Spotting. 14th International Conference on Document Analysis and Recognition.
Abstract: n this paper we present the LSDE string representation and its application to handwritten word spotting. LSDE is a novel embedding approach for representing strings that learns a space in which distances between projected points are correlated with the Levenshtein edit distance between the original strings.
We show how such a representation produces a more semantically interpretable retrieval from the user’s perspective than other state of the art ones such as PHOC and DCToW. We also conduct a preliminary handwritten word spotting experiment on the George Washington dataset.
|
|
|
E. Royer, J. Chazalon, Marçal Rusiñol and F. Bouchara. 2017. Benchmarking Keypoint Filtering Approaches for Document Image Matching. 14th International Conference on Document Analysis and Recognition.
Abstract: Best Poster Award.
Reducing the amount of keypoints used to index an image is particularly interesting to control processing time and memory usage in real-time document image matching applications, like augmented documents or smartphone applications. This paper benchmarks two keypoint selection methods on a task consisting of reducing keypoint sets extracted from document images, while preserving detection and segmentation accuracy. We first study the different forms of keypoint filtering, and we introduce the use of the CORE selection method on
keypoints extracted from document images. Then, we extend a previously published benchmark by including evaluations of the new method, by adding the SURF-BRISK detection/description scheme, and by reporting processing speeds. Evaluations are conducted on the publicly available dataset of ICDAR2015 SmartDOC challenge 1. Finally, we prove that reducing the original keypoint set is always feasible and can be beneficial
not only to processing speed but also to accuracy.
|
|
|
David Aldavert, Marçal Rusiñol and Ricardo Toledo. 2017. Automatic Static/Variable Content Separation in Administrative Document Images. 14th International Conference on Document Analysis and Recognition.
Abstract: In this paper we present an automatic method for separating static and variable content from administrative document images. An alignment approach is able to unsupervisedly build probabilistic templates from a set of examples of the same document kind. Such templates define which is the likelihood of every pixel of being either static or variable content. In the extraction step, the same alignment technique is used to match
an incoming image with the template and to locate the positions where variable fields appear. We validate our approach on the public NIST Structured Tax Forms Dataset.
|
|
|
N. Nayef and 14 others. 2017. ICDAR2017 Robust Reading Challenge on Multi-Lingual Scene Text Detection and Script Identification – RRC-MLT. 14th International Conference on Document Analysis and Recognition.1454–1459.
Abstract: Text detection and recognition in a natural environment are key components of many applications, ranging from business card digitization to shop indexation in a street. This competition aims at assessing the ability of state-of-the-art methods to detect Multi-Lingual Text (MLT) in scene images, such as in contents gathered from the Internet media and in modern cities where multiple cultures live and communicate together. This competition is an extension of the Robust Reading Competition (RRC) which has been held since 2003 both in ICDAR and in an online context. The proposed competition is presented as a new challenge of the RRC. The dataset built for this challenge largely extends the previous RRC editions in many aspects: the multi-lingual text, the size of the dataset, the multi-oriented text, the wide variety of scenes. The dataset is comprised of 18,000 images which contain text belonging to 9 languages. The challenge is comprised of three tasks related to text detection and script classification. We have received a total of 16 participations from the research and industrial communities. This paper presents the dataset, the tasks and the findings of this RRC-MLT challenge.
|
|
|
Alicia Fornes and 6 others. 2017. ICDAR2017 Competition on Information Extraction in Historical Handwritten Records. 14th International Conference on Document Analysis and Recognition.1389–1394.
Abstract: The extraction of relevant information from historical handwritten document collections is one of the key steps in order to make these manuscripts available for access and searches. In this competition, the goal is to detect the named entities and assign each of them a semantic category, and therefore, to simulate the filling in of a knowledge database. This paper describes the dataset, the tasks, the evaluation metrics, the participants methods and the results.
|
|
|
Pau Riba, Anjan Dutta, Josep Llados, Alicia Fornes and Sounak Dey. 2017. Improving Information Retrieval in Multiwriter Scenario by Exploiting the Similarity Graph of Document Terms. 14th International Conference on Document Analysis and Recognition.475–480.
Abstract: Information Retrieval (IR) is the activity of obtaining information resources relevant to a questioned information. It usually retrieves a set of objects ranked according to the relevancy to the needed fact. In document analysis, information retrieval receives a lot of attention in terms of symbol and word spotting. However, through decades the community mostly focused either on printed or on single writer scenario, where the
state-of-the-art results have achieved reasonable performance on the available datasets. Nevertheless, the existing algorithms do not perform accordingly on multiwriter scenario. A graph representing relations between a set of objects is a structure where each node delineates an individual element and the similarity between them is represented as a weight on the connecting edge. In this paper, we explore different analytics of graphs constructed from words or graphical symbols, such as diffusion, shortest path, etc. to improve the performance of information retrieval methods in multiwriter scenario
Keywords: document terms; information retrieval; affinity graph; graph of document terms; multiwriter; graph diffusion
|
|
|
Anjan Dutta, Pau Riba, Josep Llados and Alicia Fornes. 2017. Pyramidal Stochastic Graphlet Embedding for Document Pattern Classification. 14th International Conference on Document Analysis and Recognition.33–38.
Abstract: Document pattern classification methods using graphs have received a lot of attention because of its robust representation paradigm and rich theoretical background. However, the way of preserving and the process for delineating documents with graphs introduce noise in the rendition of underlying data, which creates instability in the graph representation. To deal with such unreliability in representation, in this paper, we propose Pyramidal Stochastic Graphlet Embedding (PSGE).
Given a graph representing a document pattern, our method first computes a graph pyramid by successively reducing the base graph. Once the graph pyramid is computed, we apply Stochastic Graphlet Embedding (SGE) for each level of the pyramid and combine their embedded representation to obtain a global delineation of the original graph. The consideration of pyramid of graphs rather than just a base graph extends the representational power of the graph embedding, which reduces the instability caused due to noise and distortion. When plugged with support
vector machine, our proposed PSGE has outperformed the state-of-the-art results in recognition of handwritten words as well as graphical symbols
Keywords: graph embedding; hierarchical graph representation; graph clustering; stochastic graphlet embedding; graph classification
|
|
|
Juan Ignacio Toledo, Sounak Dey, Alicia Fornes and Josep Llados. 2017. Handwriting Recognition by Attribute embedding and Recurrent Neural Networks. 14th International Conference on Document Analysis and Recognition.1038–1043.
Abstract: Handwriting recognition consists in obtaining the transcription of a text image. Recent word spotting methods based on attribute embedding have shown good performance when recognizing words. However, they are holistic methods in the sense that they recognize the word as a whole (i.e. they find the closest word in the lexicon to the word image). Consequently,
these kinds of approaches are not able to deal with out of vocabulary words, which are common in historical manuscripts. Also, they cannot be extended to recognize text lines. In order to address these issues, in this paper we propose a handwriting recognition method that adapts the attribute embedding to sequence learning. Concretely, the method learns the attribute embedding of patches of word images with a convolutional neural network. Then, these embeddings are presented as a sequence to a recurrent neural network that produces the transcription. We obtain promising results even without the use of any kind of dictionary or language model
|
|
|
Sounak Dey, Anjan Dutta, Josep Llados, Alicia Fornes and Umapada Pal. 2017. Shallow Neural Network Model for Hand-drawn Symbol Recognition in Multi-Writer Scenario. 14th International Conference on Document Analysis and Recognition.31–32.
Abstract: One of the main challenges in hand drawn symbol recognition is the variability among symbols because of the different writer styles. In this paper, we present and discuss some results recognizing hand-drawn symbols with a shallow neural network. A neural network model inspired from the LeNet architecture has been used to achieve state-of-the-art results with
very less training data, which is very unlikely to the data hungry deep neural network. From the results, it has become evident that the neural network architectures can efficiently describe and recognize hand drawn symbols from different writers and can model the inter author aberration
|
|