|
Arnau Baro, Carles Badal, Pau Torras and Alicia Fornes. 2022. Handwritten Historical Music Recognition through Sequence-to-Sequence with Attention Mechanism. 3rd International Workshop on Reading Music Systems (WoRMS2021).55–59.
Abstract: Despite decades of research in Optical Music Recognition (OMR), the recognition of old handwritten music scores remains a challenge because of the variabilities in the handwriting styles, paper degradation, lack of standard notation, etc. Therefore, the research in OMR systems adapted to the particularities of old manuscripts is crucial to accelerate the conversion of music scores existing in archives into digital libraries, fostering the dissemination and preservation of our music heritage. In this paper we explore the adaptation of sequence-to-sequence models with attention mechanism (used in translation and handwritten text recognition) and the generation of specific synthetic data for recognizing old music scores. The experimental validation demonstrates that our approach is promising, especially when compared with long short-term memory neural networks.
Keywords: Optical Music Recognition; Digits; Image Classification
|
|
|
Jialuo Chen, M.A.Souibgui, Alicia Fornes and Beata Megyesi. 2020. A Web-based Interactive Transcription Tool for Encrypted Manuscripts. 3rd International Conference on Historical Cryptology.52–59.
Abstract: Manual transcription of handwritten text is a time consuming task. In the case of encrypted manuscripts, the recognition is even more complex due to the huge variety of alphabets and symbol sets. To speed up and ease this process, we present a web-based tool aimed to (semi)-automatically transcribe the encrypted sources. The user uploads one or several images of the desired encrypted document(s) as input, and the system returns the transcription(s). This process is carried out in an interactive fashion with
the user to obtain more accurate results. For discovering and testing, the developed web tool is freely available.
|
|
|
Arnau Baro, Jialuo Chen, Alicia Fornes and Beata Megyesi. 2019. Towards a generic unsupervised method for transcription of encoded manuscripts. 3rd International Conference on Digital Access to Textual Cultural Heritage.73–78.
Abstract: Historical ciphers, a special type of manuscripts, contain encrypted information, important for the interpretation of our history. The first step towards decipherment is to transcribe the images, either manually or by automatic image processing techniques. Despite the improvements in handwritten text recognition (HTR) thanks to deep learning methodologies, the need of labelled data to train is an important limitation. Given that ciphers often use symbol sets across various alphabets and unique symbols without any transcription scheme available, these supervised HTR techniques are not suitable to transcribe ciphers. In this paper we propose an un-supervised method for transcribing encrypted manuscripts based on clustering and label propagation, which has been successfully applied to community detection in networks. We analyze the performance on ciphers with various symbol sets, and discuss the advantages and drawbacks compared to supervised HTR methods.
Keywords: A. Baró, J. Chen, A. Fornés, B. Megyesi.
|
|
|
Agnes Borras and Josep Llados. 2008. A Multi-Scale Layout Descriptor Based on Delaunay Triangulation for Image Retrieval. 3rd International Conference on Computer Vision Theory and Applications VISAPP (2) 2008.139–144.
|
|
|
Carlos David Martinez Hinarejos and 10 others. 2016. Context, multimodality, and user collaboration in handwritten text processing: the CoMUN-HaT project. 3rd IberSPEECH.
Abstract: Processing of handwritten documents is a task that is of wide interest for many
purposes, such as those related to preserve cultural heritage. Handwritten text recognition techniques have been successfully applied during the last decade to obtain transcriptions of handwritten documents, and keyword spotting techniques have been applied for searching specific terms in image collections of handwritten documents. However, results on transcription and indexing are far from perfect. In this framework, the use of new data sources arises as a new paradigm that will allow for a better transcription and indexing of handwritten documents. Three main different data sources could be considered: context of the document (style, writer, historical time, topics,. . . ), multimodal data (representations of the document in a different modality, such as the speech signal of the dictation of the text), and user feedback (corrections, amendments,. . . ). The CoMUN-HaT project aims at the integration of these different data sources into the transcription and indexing task for handwritten documents: the use of context derived from the analysis of the documents, how multimodality can aid the recognition process to obtain more accurate transcriptions (including transcription in a modern version of the language), and integration into a userin-the-loop assisted text transcription framework. This will be reflected in the construction of a transcription and indexing platform that can be used by both professional and nonprofessional users, contributing to crowd-sourcing activities to preserve cultural heritage and to obtain an accessible version of the involved corpus.
|
|
|
Jose Antonio Rodriguez, Gemma Sanchez and Josep Llados. 2007. Rejection strategies involving classifier combination for handwriting recognition. 3rd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2007), J. Marti et al. (Eds.) LNCS 4478:97–104.
|
|
|
Josep Llados, Partha Pratim Roy, Jose Antonio Rodriguez and Gemma Sanchez. 2007. Word Spotting in Archive Documents using Shape Contexts. 3rd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2007), J. Marti et al. (Eds.) LNCS 4478:290–297.
|
|
|
Marçal Rusiñol, Philippe Dosch and Josep Llados. 2007. Boundary Shape Recognition Using Accumulated Length and Angle Information. 3rd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2007), J. Marti et al. (Eds.) LNCS 4478:210–217.
|
|
|
Miquel Ferrer, Ernest Valveny and F. Serratosa. 2007. Comparison Between two Spectral-based Methods for Median Graph Computation. 3rd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2007), J. Marti et al. (Eds.) LNCS 4478(2):580–587.
|
|
|
Miquel Ferrer, Ernest Valveny and F. Serratosa. 2007. Bounding the Size Of the Median Graph. 3rd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2007), J. Marti et al. (Eds.) LNCS 4478(2):491–498.
|
|