|
David Fernandez, Josep Llados and Alicia Fornes. 2014. A graph-based approach for segmenting touching lines in historical handwritten documents. IJDAR, 17(3), 293–312.
Abstract: Text line segmentation in handwritten documents is an important task in the recognition of historical documents. Handwritten document images contain text lines with multiple orientations, touching and overlapping characters between consecutive text lines and different document structures, making line segmentation a difficult task. In this paper, we present a new approach for handwritten text line segmentation solving the problems of touching components, curvilinear text lines and horizontally overlapping components. The proposed algorithm formulates line segmentation as finding the central path in the area between two consecutive lines. This is solved as a graph traversal problem. A graph is constructed using the skeleton of the image. Then, a path-finding algorithm is used to find the optimum path between text lines. The proposed algorithm has been evaluated on a comprehensive dataset consisting of five databases: ICDAR2009, ICDAR2013, UMD, the George Washington and the Barcelona Marriages Database. The proposed method outperforms the state-of-the-art considering the different types and difficulties of the benchmarking data.
Keywords: Text line segmentation; Handwritten documents; Document image processing; Historical document analysis
|
|
|
David Fernandez, Pau Riba, Alicia Fornes and Josep Llados. 2014. On the Influence of Key Point Encoding for Handwritten Word Spotting. 14th International Conference on Frontiers in Handwriting Recognition.476–481.
Abstract: In this paper we evaluate the influence of the selection of key points and the associated features in the performance of word spotting processes. In general, features can be extracted from a number of characteristic points like corners, contours, skeletons, maxima, minima, crossings, etc. A number of descriptors exist in the literature using different interest point detectors. But the intrinsic variability of handwriting vary strongly on the performance if the interest points are not stable enough. In this paper, we analyze the performance of different descriptors for local interest points. As benchmarking dataset we have used the Barcelona Marriage Database that contains handwritten records of marriages over five centuries.
Keywords: Local descriptors; Interest points; Handwritten documents; Word spotting; Historical document analysis
|
|
|
David Fernandez, Jon Almazan, Nuria Cirera, Alicia Fornes and Josep Llados. 2014. BH2M: the Barcelona Historical Handwritten Marriages database. 22nd International Conference on Pattern Recognition.256–261.
Abstract: This paper presents an image database of historical handwritten marriages records stored in the archives of Barcelona cathedral, and the corresponding meta-data addressed to evaluate the performance of document analysis algorithms. The contribution of this paper is twofold. First, it presents a complete ground truth which covers the whole pipeline of handwriting
recognition research, from layout analysis to recognition and understanding. Second, it is the first dataset in the emerging area of genealogical document analysis, where documents are manuscripts pseudo-structured with specific lexicons and the interest is beyond pure transcriptions but context dependent.
|
|
|
David Fernandez, R.Manmatha, Josep Llados and Alicia Fornes. 2014. Sequential Word Spotting in Historical Handwritten Documents. 11th IAPR International Workshop on Document Analysis and Systems.101–105.
Abstract: In this work we present a handwritten word spotting approach that takes advantage of the a priori known order of appearance of the query words. Given an ordered sequence of query word instances, the proposed approach performs a
sequence alignment with the words in the target collection. Although the alignment is quite sparse, i.e. the number of words in the database is higher than the query set, the improvement in the overall performance is sensitively higher than isolated word spotting. As application dataset, we use a collection of handwritten marriage licenses taking advantage of the ordered
index pages of family names.
|
|
|
Pau Riba, Jon Almazan, Alicia Fornes, David Fernandez, Ernest Valveny and Josep Llados. 2014. e-Crowds: a mobile platform for browsing and searching in historical demographyrelated manuscripts. 14th International Conference on Frontiers in Handwriting Recognition.228–233.
Abstract: This paper presents a prototype system running on portable devices for browsing and word searching through historical handwritten document collections. The platform adapts the paradigm of eBook reading, where the narrative is not necessarily sequential, but centered on the user actions. The novelty is to replace digitally born books by digitized historical manuscripts of marriage licenses, so document analysis tasks are required in the browser. With an active reading paradigm, the user can cast queries of people names, so he/she can implicitly follow genealogical links. In addition, the system allows combined searches: the user can refine a search by adding more words to search. As a second contribution, the retrieval functionality involves as a core technology a word spotting module with an unified approach, which allows combined query searches, and also two input modalities: query-by-example, and query-by-string.
|
|
|
Anjan Dutta. 2014. Inexact Subgraph Matching Applied to Symbol Spotting in Graphical Documents. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: There is a resurgence in the use of structural approaches in the usual object recognition and retrieval problem. Graph theory, in particular, graph matching plays a relevant role in that. Specifically, the detection of an object (or a part of that) in an image in terms of structural features can be formulated as a subgraph matching. Subgraph matching is a challenging task. Specially due to the presence of outliers most of the graph matching algorithms do not perform well in subgraph matching scenario. Also exact subgraph isomorphism has proven to be an NP-complete problem. So naturally, in graph matching community, there are lot of efforts addressing the problem of subgraph matching within suboptimal bound. Most of them work with approximate algorithms that try to get an inexact solution in estimated way. In addition, usual recognition must cope with distortion. Inexact graph matching consists in finding the best isomorphism under a similarity measure. Theoretically this thesis proposes algorithms for solving subgraph matching in an approximate and inexact way.
We consider the symbol spotting problem on graphical documents or line drawings from application point of view. This is a well known problem in the graphics recognition community. It can be further applied for indexing and classification of documents based on their contents. The structural nature of this kind of documents easily motivates one for giving a graph based representation. So the symbol spotting problem on graphical documents can be considered as a subgraph matching problem. The main challenges in this application domain is the noise and distortions that might come during the usage, digitalization and raster to vector conversion of those documents. Apart from that computer vision nowadays is not any more confined within a limited number of images. So dealing a huge number of images with graph based method is a further challenge.
In this thesis, on one hand, we have worked on efficient and robust graph representation to cope with the noise and distortions coming from documents. On the other hand, we have worked on different graph based methods and framework to solve the subgraph matching problem in a better approximated way, which can also deal with considerable number of images. Firstly, we propose a symbol spotting method by hashing serialized subgraphs. Graph serialization allows to create factorized substructures such as graph paths, which can be organized in hash tables depending on the structural similarities of the serialized subgraphs. The involvement of hashing techniques helps to reduce the search space substantially and speeds up the spotting procedure. Secondly, we introduce contextual similarities based on the walk based propagation on tensor product graph. These contextual similarities involve higher order information and more reliable than pairwise similarities. We use these higher order similarities to formulate subgraph matching as a node and edge selection problem in the tensor product graph. Thirdly, we propose near convex grouping to form near convex region adjacency graph which eliminates the limitations of traditional region adjacency graph representation for graphic recognition. Fourthly, we propose a hierarchical graph representation by simplifying/correcting the structural errors to create a hierarchical graph of the base graph. Later these hierarchical graph structures are matched with some graph matching methods. Apart from that, in this thesis we have provided an overall experimental comparison of all the methods and some of the state-of-the-art methods. Furthermore, some dataset models have also been proposed.
|
|
|
Christophe Rigaud, Dimosthenis Karatzas, Jean-Christophe Burie and Jean-Marc Ogier. 2014. Color descriptor for content-based drawing retrieval. 11th IAPR International Workshop on Document Analysis and Systems.267–271.
Abstract: Human detection in computer vision field is an active field of research. Extending this to human-like drawings such as the main characters in comic book stories is not trivial. Comics analysis is a very recent field of research at the intersection of graphics, texts, objects and people recognition. The detection of the main comic characters is an essential step towards a fully automatic comic book understanding. This paper presents a color-based approach for comics character retrieval using content-based drawing retrieval and color palette.
|
|
|
Clement Guerin, Christophe Rigaud, Karell Bertet, Jean-Christophe Burie, Arnaud Revel and Jean-Marc Ogier. 2014. Réduction de l’espace de recherche pour les personnages de bandes dessinées. 19th National Congress Reconnaissance de Formes et l'Intelligence Artificielle.
Abstract: Les bandes dessinées représentent un patrimoine culturel important dans de nombreux pays et leur numérisation massive offre la possibilité d'effectuer des recherches dans le contenu des images. À ce jour, ce sont principalement les structures des pages et leurs contenus textuels qui ont été étudiés, peu de travaux portent sur le contenu graphique. Nous proposons de nous appuyer sur des éléments déjà étudiés tels que la position des cases et des bulles, pour réduire l'espace de recherche et localiser les personnages en fonction de la queue des bulles. L'évaluation de nos différentes contributions à partir de la base eBDtheque montre un taux de détection des queues de bulle de 81.2%, de localisation des personnages allant jusqu'à 85% et un gain d'espace de recherche de plus de 50%.
Keywords: contextual search; document analysis; comics characters
|
|
|
Christophe Rigaud and Clement Guerin. 2014. Localisation contextuelle des personnages de bandes dessinées. Colloque International Francophone sur l'Écrit et le Document.
Abstract: Les auteurs proposent une méthode de localisation des personnages dans des cases de bandes dessinées en s'appuyant sur les caractéristiques des bulles de dialogue. L'évaluation montre un taux de localisation des personnages allant jusqu'à 65%.
|
|
|
Jon Almazan, Albert Gordo, Alicia Fornes and Ernest Valveny. 2014. Word Spotting and Recognition with Embedded Attributes. TPAMI, 36(12), 2552–2566.
Abstract: This article addresses the problems of word spotting and word recognition on images. In word spotting, the goal is to find all instances of a query word in a dataset of images. In recognition, the goal is to recognize the content of the word image, usually aided by a dictionary or lexicon. We describe an approach in which both word images and text strings are embedded in a common vectorial subspace. This is achieved by a combination of label embedding and attributes learning, and a common subspace regression. In this subspace, images and strings that represent the same word are close together, allowing one to cast recognition and retrieval tasks as a nearest neighbor problem. Contrary to most other existing methods, our representation has a fixed length, is low dimensional, and is very fast to compute and, especially, to compare. We test our approach on four public datasets of both handwritten documents and natural images showing results comparable or better than the state-of-the-art on spotting and recognition tasks.
|
|