|
Anjan Dutta, Pau Riba, Josep Llados and Alicia Fornes. 2017. Pyramidal Stochastic Graphlet Embedding for Document Pattern Classification. 14th International Conference on Document Analysis and Recognition.33–38.
Abstract: Document pattern classification methods using graphs have received a lot of attention because of its robust representation paradigm and rich theoretical background. However, the way of preserving and the process for delineating documents with graphs introduce noise in the rendition of underlying data, which creates instability in the graph representation. To deal with such unreliability in representation, in this paper, we propose Pyramidal Stochastic Graphlet Embedding (PSGE).
Given a graph representing a document pattern, our method first computes a graph pyramid by successively reducing the base graph. Once the graph pyramid is computed, we apply Stochastic Graphlet Embedding (SGE) for each level of the pyramid and combine their embedded representation to obtain a global delineation of the original graph. The consideration of pyramid of graphs rather than just a base graph extends the representational power of the graph embedding, which reduces the instability caused due to noise and distortion. When plugged with support
vector machine, our proposed PSGE has outperformed the state-of-the-art results in recognition of handwritten words as well as graphical symbols
Keywords: graph embedding; hierarchical graph representation; graph clustering; stochastic graphlet embedding; graph classification
|
|
|
Pau Riba, Josep Llados, Alicia Fornes and Anjan Dutta. 2015. Large-scale Graph Indexing using Binary Embeddings of Node Contexts. In C.-L.Liu, B.Luo, W.G.Kropatsch and J.Cheng, eds. 10th IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition. Springer International Publishing, 208–217. (LNCS.)
Abstract: Graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their representational power in front of classical appearance-based representations in terms of feature vectors. Retrieving a query graph from a large dataset of graphs has the drawback of the high computational complexity required to compare the query and the target graphs. The most important property for a large-scale retrieval is the search time complexity to be sub-linear in the number of database examples. In this paper we propose a fast indexation formalism for graph retrieval. A binary embedding is defined as hashing keys for graph nodes. Given a database of labeled graphs, graph nodes are complemented with vectors of attributes representing their local context. Hence, each attribute counts the length of a walk of order k originated in a vertex with label l. Each attribute vector is converted to a binary code applying a binary-valued hash function. Therefore, graph retrieval is formulated in terms of finding target graphs in the database whose nodes have a small Hamming distance from the query nodes, easily computed with bitwise logical operators. As an application example, we validate the performance of the proposed methods in a handwritten word spotting scenario in images of historical documents.
Keywords: Graph matching; Graph indexing; Application in document analysis; Word spotting; Binary embedding
|
|
|
Salim Jouili, Salvatore Tabbone and Ernest Valveny. 2009. Evaluation of graph matching measures for documents retrieval. In proceedings of 8th IAPR International Workshop on Graphics Recognition.13–21.
Abstract: In this paper we evaluate four graph distance measures. The analysis is performed for document retrieval tasks. For this aim, different kind of documents are used which include line drawings (symbols), ancient documents (ornamental letters), shapes and trademark-logos. The experimental results show that the performance of each grahp distance measure depends on the kind of data and the graph representation technique.
Keywords: Graph Matching; Graph retrieval; structural representation; Performance Evaluation
|
|
|
Miquel Ferrer, Ernest Valveny, F. Serratosa, K. Riesen and Horst Bunke. 2010. Generalized Median Graph Computation by Means of Graph Embedding in Vector Spaces. PR, 43(4), 1642–1655.
Abstract: The median graph has been presented as a useful tool to represent a set of graphs. Nevertheless its computation is very complex and the existing algorithms are restricted to use limited amount of data. In this paper we propose a new approach for the computation of the median graph based on graph embedding. Graphs are embedded into a vector space and the median is computed in the vector domain. We have designed a procedure based on the weighted mean of a pair of graphs to go from the vector domain back to the graph domain in order to obtain a final approximation of the median graph. Experiments on three different databases containing large graphs show that we succeed to compute good approximations of the median graph. We have also applied the median graph to perform some basic classification tasks achieving reasonable good results. These experiments on real data open the door to the application of the median graph to a number of more complex machine learning algorithms where a representative of a set of graphs is needed.
Keywords: Graph matching; Weighted mean of graphs; Median graph; Graph embedding; Vector spaces
|
|
|
Lluis Pere de las Heras, Oriol Ramos Terrades and Josep Llados. 2017. Ontology-Based Understanding of Architectural Drawings. International Workshop on Graphics Recognition. GREC 2015.Graphic Recognition. Current Trends and Challenges.75–85. (LNCS.)
Abstract: In this paper we present a knowledge base of architectural documents aiming at improving existing methods of floor plan classification and understanding. It consists of an ontological definition of the domain and the inclusion of real instances coming from both, automatically interpreted and manually labeled documents. The knowledge base has proven to be an effective tool to structure our knowledge and to easily maintain and upgrade it. Moreover, it is an appropriate means to automatically check the consistency of relational data and a convenient complement of hard-coded knowledge interpretation systems.
Keywords: Graphics recognition; Floor plan analysi; Domain ontology
|
|
|
Lluis Pere de las Heras, Ernest Valveny and Gemma Sanchez. 2014. Unsupervised and Notation-Independent Wall Segmentation in Floor Plans Using a Combination of Statistical and Structural Strategies. Graphics Recognition. Current Trends and Challenges. Springer Berlin Heidelberg, 109–121. (LNCS.)
Abstract: In this paper we present a wall segmentation approach in floor plans that is able to work independently to the graphical notation, does not need any pre-annotated data for learning, and is able to segment multiple-shaped walls such as beams and curved-walls. This method results from the combination of the wall segmentation approaches [3, 5] presented recently by the authors. Firstly, potential straight wall segments are extracted in an unsupervised way similar to [3], but restricting even more the wall candidates considered in the original approach. Then, based on [5], these segments are used to learn the texture pattern of walls and spot the lost instances. The presented combination of both methods has been tested on 4 available datasets with different notations and compared qualitatively and quantitatively to the state-of-the-art applied on these collections. Additionally, some qualitative results on floor plans directly downloaded from the Internet are reported in the paper. The overall performance of the method demonstrates either its adaptability to different wall notations and shapes, and to document qualities and resolutions.
Keywords: Graphics recognition; Floor plan analysis; Object segmentation
|
|
|
Lluis Pere de las Heras, David Fernandez, Alicia Fornes, Ernest Valveny, Gemma Sanchez and Josep Llados. 2014. Runlength Histogram Image Signature for Perceptual Retrieval of Architectural Floor Plans. Graphics Recognition. Current Trends and Challenges. Springer Berlin Heidelberg, 135–146. (LNCS.)
Abstract: This paper proposes a runlength histogram signature as a perceptual descriptor of architectural plans in a retrieval scenario. The style of an architectural drawing is characterized by the perception of lines, shapes and texture. Such visual stimuli are the basis for defining semantic concepts as space properties, symmetry, density, etc. We propose runlength histograms extracted in vertical, horizontal and diagonal directions as a characterization of line and space properties in floorplans, so it can be roughly associated to a description of walls and room structure. A retrieval application illustrates the performance of the proposed approach, where given a plan as a query, similar ones are obtained from a database. A ground truth based on human observation has been constructed to validate the hypothesis. Additional retrieval results on sketched building’s facades are reported qualitatively in this paper. Its good description and its adaptability to two different sketch drawings despite its simplicity shows the interest of the proposed approach and opens a challenging research line in graphics recognition.
Keywords: Graphics recognition; Graphics retrieval; Image classification
|
|
|
Thanh Ha Do, Salvatore Tabbone and Oriol Ramos Terrades. 2012. Text/graphic separation using a sparse representation with multi-learned dictionaries. 21st International Conference on Pattern Recognition.
Abstract: In this paper, we propose a new approach to extract text regions from graphical documents. In our method, we first empirically construct two sequences of learned dictionaries for the text and graphical parts respectively. Then, we compute the sparse representations of all different sizes and non-overlapped document patches in these learned dictionaries. Based on these representations, each patch can be classified into the text or graphic category by comparing its reconstruction errors. Same-sized patches in one category are then merged together to define the corresponding text or graphic layers which are combined to createfinal text/graphic layer. Finally, in a post-processing step, text regions are further filtered out by using some learned thresholds.
Keywords: Graphics Recognition; Layout Analysis; Document Understandin
|
|
|
Oriol Ramos Terrades, Alejandro Hector Toselli, Nicolas Serrano, Veronica Romero, Enrique Vidal and Alfons Juan. 2010. Interactive layout analysis and transcription systems for historic handwritten documents. 10th ACM Symposium on Document Engineering.219–222.
Abstract: The amount of digitized legacy documents has been rising dramatically over the last years due mainly to the increasing number of on-line digital libraries publishing this kind of documents, waiting to be classified and finally transcribed into a textual electronic format (such as ASCII or PDF). Nevertheless, most of the available fully-automatic applications addressing this task are far from being perfect and heavy and inefficient human intervention is often required to check and correct the results of such systems. In contrast, multimodal interactive-predictive approaches may allow the users to participate in the process helping the system to improve the overall performance. With this in mind, two sets of recent advances are introduced in this work: a novel interactive method for text block detection and two multimodal interactive handwritten text transcription systems which use active learning and interactive-predictive technologies in the recognition process.
Keywords: Handwriting recognition; Interactive predictive processing; Partial supervision; Interactive layout analysis
|
|
|
Josep Llados, Marçal Rusiñol, Alicia Fornes, David Fernandez and Anjan Dutta. 2012. On the Influence of Word Representations for Handwritten Word Spotting in Historical Documents. IJPRAI, 26(5), 1263002–126027.
Abstract: 0,624 JCR
Word spotting is the process of retrieving all instances of a queried keyword from a digital library of document images. In this paper we evaluate the performance of different word descriptors to assess the advantages and disadvantages of statistical and structural models in a framework of query-by-example word spotting in historical documents. We compare four word representation models, namely sequence alignment using DTW as a baseline reference, a bag of visual words approach as statistical model, a pseudo-structural model based on a Loci features representation, and a structural approach where words are represented by graphs. The four approaches have been tested with two collections of historical data: the George Washington database and the marriage records from the Barcelona Cathedral. We experimentally demonstrate that statistical representations generally give a better performance, however it cannot be neglected that large descriptors are difficult to be implemented in a retrieval scenario where word spotting requires the indexation of data with million word images.
Keywords: Handwriting recognition; word spotting; historical documents; feature representation; shape descriptors Read More: http://www.worldscientific.com/doi/abs/10.1142/S0218001412630025
|
|