|
Marçal Rusiñol, Lluis Gomez, A. Landman, M. Silva Constenla and Dimosthenis Karatzas. 2019. Automatic Structured Text Reading for License Plates and Utility Meters. BMVC Workshop on Visual Artificial Intelligence and Entrepreneurship.
Abstract: Reading text in images has attracted interest from computer vision researchers for
many years. Our technology focuses on the extraction of structured text – such as serial
numbers, machine readings, product codes, etc. – so that it is able to center its attention just on the relevant textual elements. It is conceived to work in an end-to-end fashion, bypassing any explicit text segmentation stage. In this paper we present two different industrial use cases where we have applied our automatic structured text reading technology. In the first one, we demonstrate an outstanding performance when reading license plates compared to the current state of the art. In the second one, we present results on our solution for reading utility meters. The technology is commercialized by a recently created spin-off company, and both solutions are at different stages of integration with final clients.
|
|
|
Ali Furkan Biten and 8 others. 2019. ICDAR 2019 Competition on Scene Text Visual Question Answering. 3rd Workshop on Closing the Loop Between Vision and Language, in conjunction with ICCV2019.
Abstract: This paper presents final results of ICDAR 2019 Scene Text Visual Question Answering competition (ST-VQA). ST-VQA introduces an important aspect that is not addressed
by any Visual Question Answering system up to date, namely the incorporation of scene text to answer questions asked about an image. The competition introduces a new dataset comprising 23, 038 images annotated with 31, 791 question / answer pairs where the answer is always grounded on text instances present in the image. The images are taken from 7 different public computer vision datasets, covering a wide range of scenarios.
The competition was structured in three tasks of increasing difficulty, that require reading the text in a scene and understanding it in the context of the scene, to correctly answer a given question. A novel evaluation metric is presented, which elegantly assesses both key capabilities expected from an optimal model: text recognition and image understanding. A detailed analysis of results from different participants is showcased, which provides insight into the current capabilities of VQA systems that can read. We firmly believe the dataset proposed in this challenge will be an important milestone to consider towards a path of more robust and general models that
can exploit scene text to achieve holistic image understanding.
|
|
|
Ali Furkan Biten and 7 others. 2019. Scene Text Visual Question Answering. 18th IEEE International Conference on Computer Vision.4291–4301.
Abstract: Current visual question answering datasets do not consider the rich semantic information conveyed by text within an image. In this work, we present a new dataset, ST-VQA, that aims to highlight the importance of exploiting highlevel semantic information present in images as textual cues in the Visual Question Answering process. We use this dataset to define a series of tasks of increasing difficulty for which reading the scene text in the context provided by the visual information is necessary to reason and generate an appropriate answer. We propose a new evaluation metric for these tasks to account both for reasoning errors as well as shortcomings of the text recognition module. In addition we put forward a series of baseline methods, which provide further insight to the newly released dataset, and set the scene for further research.
|
|
|
Ali Furkan Biten and 8 others. 2019. ICDAR 2019 Competition on Scene Text Visual Question Answering. 15th International Conference on Document Analysis and Recognition.1563–1570.
Abstract: This paper presents final results of ICDAR 2019 Scene Text Visual Question Answering competition (ST-VQA). ST-VQA introduces an important aspect that is not addressed by any Visual Question Answering system up to date, namely the incorporation of scene text to answer questions asked about an image. The competition introduces a new dataset comprising 23,038 images annotated with 31,791 question / answer pairs where the answer is always grounded on text instances present in the image. The images are taken from 7 different public computer vision datasets, covering a wide range of scenarios. The competition was structured in three tasks of increasing difficulty, that require reading the text in a scene and understanding it in the context of the scene, to correctly answer a given question. A novel evaluation metric is presented, which elegantly assesses both key capabilities expected from an optimal model: text recognition and image understanding. A detailed analysis of results from different participants is showcased, which provides insight into the current capabilities of VQA systems that can read. We firmly believe the dataset proposed in this challenge will be an important milestone to consider towards a path of more robust and general models that can exploit scene text to achieve holistic image understanding.
|
|
|
Y. Patel, Lluis Gomez, Marçal Rusiñol, Dimosthenis Karatzas and C.V. Jawahar. 2019. Self-Supervised Visual Representations for Cross-Modal Retrieval. ACM International Conference on Multimedia Retrieval.182–186.
Abstract: Cross-modal retrieval methods have been significantly improved in last years with the use of deep neural networks and large-scale annotated datasets such as ImageNet and Places. However, collecting and annotating such datasets requires a tremendous amount of human effort and, besides, their annotations are limited to discrete sets of popular visual classes that may not be representative of the richer semantics found on large-scale cross-modal retrieval datasets. In this paper, we present a self-supervised cross-modal retrieval framework that leverages as training data the correlations between images and text on the entire set of Wikipedia articles. Our method consists in training a CNN to predict: (1) the semantic context of the article in which an image is more probable to appear as an illustration, and (2) the semantic context of its caption. Our experiments demonstrate that the proposed method is not only capable of learning discriminative visual representations for solving vision tasks like classification, but that the learned representations are better for cross-modal retrieval when compared to supervised pre-training of the network on the ImageNet dataset.
|
|
|
Ali Furkan Biten, Lluis Gomez, Marçal Rusiñol and Dimosthenis Karatzas. 2019. Good News, Everyone! Context driven entity-aware captioning for news images. 32nd IEEE Conference on Computer Vision and Pattern Recognition.12458–12467.
Abstract: Current image captioning systems perform at a merely descriptive level, essentially enumerating the objects in the scene and their relations. Humans, on the contrary, interpret images by integrating several sources of prior knowledge of the world. In this work, we aim to take a step closer to producing captions that offer a plausible interpretation of the scene, by integrating such contextual information into the captioning pipeline. For this we focus on the captioning of images used to illustrate news articles. We propose a novel captioning method that is able to leverage contextual information provided by the text of news articles associated with an image. Our model is able to selectively draw information from the article guided by visual cues, and to dynamically extend the output dictionary to out-of-vocabulary named entities that appear in the context source. Furthermore we introduce“ GoodNews”, the largest news image captioning dataset in the literature and demonstrate state-of-the-art results.
|
|
|
Andres Mafla, Sounak Dey, Ali Furkan Biten, Lluis Gomez and Dimosthenis Karatzas. 2020. Fine-grained Image Classification and Retrieval by Combining Visual and Locally Pooled Textual Features. IEEE Winter Conference on Applications of Computer Vision.
Abstract: Text contained in an image carries high-level semantics that can be exploited to achieve richer image understanding. In particular, the mere presence of text provides strong guiding content that should be employed to tackle a diversity of computer vision tasks such as image retrieval, fine-grained classification, and visual question answering. In this paper, we address the problem of fine-grained classification and image retrieval by leveraging textual information along with visual cues to comprehend the existing intrinsic relation between the two modalities. The novelty of the proposed model consists of the usage of a PHOC descriptor to construct a bag of textual words along with a Fisher Vector Encoding that captures the morphology of text. This approach provides a stronger multimodal representation for this task and as our experiments demonstrate, it achieves state-of-the-art results on two different tasks, fine-grained classification and image retrieval.
|
|
|
Rui Zhang and 14 others. 2019. ICDAR 2019 Robust Reading Challenge on Reading Chinese Text on Signboard. 15th International Conference on Document Analysis and Recognition.1577–1581.
Abstract: Chinese scene text reading is one of the most challenging problems in computer vision and has attracted great interest. Different from English text, Chinese has more than 6000 commonly used characters and Chinesecharacters can be arranged in various layouts with numerous fonts. The Chinese signboards in street view are a good choice for Chinese scene text images since they have different backgrounds, fonts and layouts. We organized a competition called ICDAR2019-ReCTS, which mainly focuses on reading Chinese text on signboard. This report presents the final results of the competition. A large-scale dataset of 25,000 annotated signboard images, in which all the text lines and characters are annotated with locations and transcriptions, were released. Four tasks, namely character recognition, text line recognition, text line detection and end-to-end recognition were set up. Besides, considering the Chinese text ambiguity issue, we proposed a multi ground truth (multi-GT) evaluation method to make evaluation fairer. The competition started on March 1, 2019 and ended on April 30, 2019. 262 submissions from 46 teams are received. Most of the participants come from universities, research institutes, and tech companies in China. There are also some participants from the United States, Australia, Singapore, and Korea. 21 teams submit results for Task 1, 23 teams submit results for Task 2, 24 teams submit results for Task 3, and 13 teams submit results for Task 4.
|
|
|
Helena Muñoz, Fernando Vilariño and Dimosthenis Karatzas. 2019. Eye-Movements During Information Extraction from Administrative Documents. International Conference on Document Analysis and Recognition Workshops.6–9.
Abstract: A key aspect of digital mailroom processes is the extraction of relevant information from administrative documents. More often than not, the extraction process cannot be fully automated, and there is instead an important amount of manual intervention. In this work we study the human process of information extraction from invoice document images. We explore whether the gaze of human annotators during an manual information extraction process could be exploited towards reducing the manual effort and automating the process. To this end, we perform an eye-tracking experiment replicating real-life interfaces for information extraction. Through this pilot study we demonstrate that relevant areas in the document can be identified reliably through automatic fixation classification, and the obtained models generalize well to new subjects. Our findings indicate that it is in principle possible to integrate the human in the document image analysis loop, making use of the scanpath to automate the extraction process or verify extracted information.
|
|
|
Mohammed Al Rawi, Ernest Valveny and Dimosthenis Karatzas. 2019. Can One Deep Learning Model Learn Script-Independent Multilingual Word-Spotting? 15th International Conference on Document Analysis and Recognition.260–267.
Abstract: Word spotting has gained increased attention lately as it can be used to extract textual information from handwritten documents and scene-text images. Current word spotting approaches are designed to work on a single language and/or script. Building intelligent models that learn script-independent multilingual word-spotting is challenging due to the large variability of multilingual alphabets and symbols. We used ResNet-152 and the Pyramidal Histogram of Characters (PHOC) embedding to build a one-model script-independent multilingual word-spotting and we tested it on Latin, Arabic, and Bangla (Indian) languages. The one-model we propose performs on par with the multi-model language-specific word-spotting system, and thus, reduces the number of models needed for each script and/or language.
|
|