|
Marçal Rusiñol, Dimosthenis Karatzas and Josep Llados. 2015. Automatic Verification of Properly Signed Multi-page Document Images. Proceedings of the Eleventh International Symposium on Visual Computing.327–336. (LNCS 9475.)
Abstract: In this paper we present an industrial application for the automatic screening of incoming multi-page documents in a banking workflow aimed at determining whether these documents are properly signed or not. The proposed method is divided in three main steps. First individual pages are classified in order to identify the pages that should contain a signature. In a second step, we segment within those key pages the location where the signatures should appear. The last step checks whether the signatures are present or not. Our method is tested in a real large-scale environment and we report the results when checking two different types of real multi-page contracts, having in total more than 14,500 pages.
Keywords: Document Image; Manual Inspection; Signature Verification; Rejection Criterion; Document Flow
|
|
|
L. Rothacker, Marçal Rusiñol, Josep Llados and G.A. Fink. 2014. A Two-stage Approach to Segmentation-Free Query-by-example Word Spotting.
Abstract: With the ongoing progress in digitization, huge document collections and archives have become available to a broad audience. Scanned document images can be transmitted electronically and studied simultaneously throughout the world. While this is very beneficial, it is often impossible to perform automated searches on these document collections. Optical character recognition usually fails when it comes to handwritten or historic documents. In order to address the need for exploring document collections rapidly, researchers are working on word spotting. In query-by-example word spotting scenarios, the user selects an exemplary occurrence of the query word in a document image. The word spotting system then retrieves all regions in the collection that are visually similar to the given example of the query word. The best matching regions are presented to the user and no actual transcription is required.
An important property of a word spotting system is the computational speed with which queries can be executed. In our previous work, we presented a relatively slow but high-precision method. In the present work, we will extend this baseline system to an integrated two-stage approach. In a coarse-grained first stage, we will filter document images efficiently in order to identify regions that are likely to contain the query word. In the fine-grained second stage, these regions will be analyzed with our previously presented high-precision method. Finally, we will report recognition results and query times for the well-known George Washington
benchmark in our evaluation. We achieve state-of-the-art recognition results while the query times can be reduced to 50% in comparison with our baseline.
|
|
|
Giacomo Magnifico, Beata Megyesi, Mohamed Ali Souibgui, Jialuo Chen and Alicia Fornes. 2022. Lost in Transcription of Graphic Signs in Ciphers. International Conference on Historical Cryptology (HistoCrypt 2022).153–158.
Abstract: Hand-written Text Recognition techniques with the aim to automatically identify and transcribe hand-written text have been applied to historical sources including ciphers. In this paper, we compare the performance of two machine learning architectures, an unsupervised method based on clustering and a deep learning method with few-shot learning. Both models are tested on seen and unseen data from historical ciphers with different symbol sets consisting of various types of graphic signs. We compare the models and highlight their differences in performance, with their advantages and shortcomings.
Keywords: transcription of ciphers; hand-written text recognition of symbols; graphic signs
|
|
|
Pau Riba, Lutz Goldmann, Oriol Ramos Terrades, Diede Rusticus, Alicia Fornes and Josep Llados. 2022. Table detection in business document images by message passing networks. PR, 127, 108641.
Abstract: Tabular structures in business documents offer a complementary dimension to the raw textual data. For instance, there is information about the relationships among pieces of information. Nowadays, digital mailroom applications have become a key service for workflow automation. Therefore, the detection and interpretation of tables is crucial. With the recent advances in information extraction, table detection and recognition has gained interest in document image analysis, in particular, with the absence of rule lines and unknown information about rows and columns. However, business documents usually contain sensitive contents limiting the amount of public benchmarking datasets. In this paper, we propose a graph-based approach for detecting tables in document images which do not require the raw content of the document. Hence, the sensitive content can be previously removed and, instead of using the raw image or textual content, we propose a purely structural approach to keep sensitive data anonymous. Our framework uses graph neural networks (GNNs) to describe the local repetitive structures that constitute a table. In particular, our main application domain are business documents. We have carefully validated our approach in two invoice datasets and a modern document benchmark. Our experiments demonstrate that tables can be detected by purely structural approaches.
|
|
|
Suman Ghosh. 2018. Word Spotting and Recognition in Images from Heterogeneous Sources A. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: Text is the most common way of information sharing from ages. With recent development of personal images databases and handwritten historic manuscripts the demand for algorithms to make these databases accessible for browsing and indexing are in rise. Enabling search or understanding large collection of manuscripts or image databases needs fast and robust methods. Researchers have found different ways to represent cropped words for understanding and matching, which works well when words are already segmented. However there is no trivial way to extend these for non-segmented documents. In this thesis we explore different methods for text retrieval and recognition from unsegmented document and scene images. Two different ways of representation exist in literature, one uses a fixed length representation learned from cropped words and another a sequence of features of variable length. Throughout this thesis, we have studied both these representation for their suitability in segmentation free understanding of text. In the first part we are focused on segmentation free word spotting using a fixed length representation. We extended the use of the successful PHOC (Pyramidal Histogram of Character) representation to segmentation free retrieval. In the second part of the thesis, we explore sequence based features and finally, we propose a unified solution where the same framework can generate both kind of representations.
|
|
|
Ilke Demir, Dena Bazazian, Adriana Romero, Viktoriia Sharmanska and Lyne P. Tchapmi. 2018. WiCV 2018: The Fourth Women In Computer Vision Workshop. 4th Women in Computer Vision Workshop.1941–19412.
Abstract: We present WiCV 2018 – Women in Computer Vision Workshop to increase the visibility and inclusion of women researchers in computer vision field, organized in conjunction with CVPR 2018. Computer vision and machine learning have made incredible progress over the past years, yet the number of female researchers is still low both in academia and industry. WiCV is organized to raise visibility of female researchers, to increase the collaboration,
and to provide mentorship and give opportunities to femaleidentifying junior researchers in the field. In its fourth year, we are proud to present the changes and improvements over the past years, summary of statistics for presenters and attendees, followed by expectations from future generations.
Keywords: Conferences; Computer vision; Industries; Object recognition; Engineering profession; Collaboration; Machine learning
|
|
|
Arnau Baro, Pau Riba and Alicia Fornes. 2018. A Starting Point for Handwritten Music Recognition. 1st International Workshop on Reading Music Systems.5–6.
Abstract: In the last years, the interest in Optical Music Recognition (OMR) has reawakened, especially since the appearance of deep learning. However, there are very few works addressing handwritten scores. In this work we describe a full OMR pipeline for handwritten music scores by using Convolutional and Recurrent Neural Networks that could serve as a baseline for the research community.
Keywords: Optical Music Recognition; Long Short-Term Memory; Convolutional Neural Networks; MUSCIMA++; CVCMUSCIMA
|
|
|
Anjan Dutta and Hichem Sahbi. 2018. Stochastic Graphlet Embedding. TNNLS, 1–14.
Abstract: Graph-based methods are known to be successful in many machine learning and pattern classification tasks. These methods consider semi-structured data as graphs where nodes correspond to primitives (parts, interest points, segments,
etc.) and edges characterize the relationships between these primitives. However, these non-vectorial graph data cannot be straightforwardly plugged into off-the-shelf machine learning algorithms without a preliminary step of – explicit/implicit –graph vectorization and embedding. This embedding process
should be resilient to intra-class graph variations while being highly discriminant. In this paper, we propose a novel high-order stochastic graphlet embedding (SGE) that maps graphs into vector spaces. Our main contribution includes a new stochastic search procedure that efficiently parses a given graph and extracts/samples unlimitedly high-order graphlets. We consider
these graphlets, with increasing orders, to model local primitives as well as their increasingly complex interactions. In order to build our graph representation, we measure the distribution of these graphlets into a given graph, using particular hash functions that efficiently assign sampled graphlets into isomorphic sets with a very low probability of collision. When
combined with maximum margin classifiers, these graphlet-based representations have positive impact on the performance of pattern comparison and recognition as corroborated through extensive experiments using standard benchmark databases.
Keywords: Stochastic graphlets; Graph embedding; Graph classification; Graph hashing; Betweenness centrality
|
|
|
Arnau Baro, Pau Riba, Jorge Calvo-Zaragoza and Alicia Fornes. 2018. Optical Music Recognition by Long Short-Term Memory Networks. In A. Fornes, B.L., ed. Graphics Recognition. Current Trends and Evolutions. Springer, 81–95. (LNCS.)
Abstract: Optical Music Recognition refers to the task of transcribing the image of a music score into a machine-readable format. Many music scores are written in a single staff, and therefore, they could be treated as a sequence. Therefore, this work explores the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for reading the music score sequentially, where the LSTM helps in keeping the context. For training, we have used a synthetic dataset of more than 40000 images, labeled at primitive level. The experimental results are promising, showing the benefits of our approach.
Keywords: Optical Music Recognition; Recurrent Neural Network; Long ShortTerm Memory
|
|
|
Lasse Martensson, Ekta Vats, Anders Hast and Alicia Fornes. 2019. In Search of the Scribe: Letter Spotting as a Tool for Identifying Scribes in Large Handwritten Text Corpora.
Abstract: In this article, a form of the so-called word spotting-method is used on a large set of handwritten documents in order to identify those that contain script of similar execution. The point of departure for the investigation is the mediaeval Swedish manuscript Cod. Holm. D 3. The main scribe of this manuscript has yet not been identified in other documents. The current attempt aims at localising other documents that display a large degree of similarity in the characteristics of the script, these being possible candidates for being executed by the same hand. For this purpose, the method of word spotting has been employed, focusing on individual letters, and therefore the process is referred to as letter spotting in the article. In this process, a set of ‘g’:s, ‘h’:s and ‘k’:s have been selected as templates, and then a search has been made for close matches among the mediaeval Swedish charters. The search resulted in a number of charters that displayed great similarities with the manuscript D 3. The used letter spotting method thus proofed to be a very efficient sorting tool localising similar script samples.
Keywords: Scribal attribution/ writer identification; digital palaeography; word spotting; mediaeval charters; mediaeval manuscripts
|
|